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Abstract

A pair of simple models representing the interaction of a continuously stratified f-plane quasi-
geostrophic lens with a uniform external shear flow is examined. The study is motivated by the
desire to understand the processes that affect Mediterranean Salt Lenses and other mesoscale lenses
in the ocean. The first model represents the eddy as a pair of quasigeostrophic 'point potential
vortices' in uniform external shear, where the two point vortices are imagined to represent the
top and bottom of a baroclinic eddy. While highly idealized, the model succeeds in qualitatively
reproducing many aspects of the behavior of more complex models. In the second model the eddy
is represented by an isolated three dimensional patch characterized by quasigeostrophic potential
vorticity linear in z, in a background flow with constant potential vorticity. The boundary of the
lens may be deformed by interactions with a uniform background shear. A family of linearized
analytical solutions representing such a vortex is discussed in Chapter 3. These solutions represent
lens-like eddies with trapped fluid cores, which may propagate through the surrounding water when
there is external vertical shear. The analysis predicts the possible forms of the boundary deforma-

tion in a specified external flow, and the precession rate of normal mode boundary perturbations
in the absence of external flow. The translation speed of the lens with respect to the surrounding
fluid is found to be a simple function of the external vertical shear and the core barocinicity.

A numerical algorithm which is a generalization of the contour dynamics technique to strat-
ified quasigeostrophic flow is used to extend the linear results into the nonlinear regime. This
numerical analysis allows a determination of the range of environmental conditions (e.g., the max-
imum shear and/or core barocinicity) in which coherent vortex solutions can be found, and allows
the stability of the steadily translating solutions to be examined directly. It is found that the
solutions are stable if neither the external shear nor the core barocinicity is too large, and that the
breakdown of the unstable solutions is characterized by the loss of an extrusion of core fluid to the
surrounding waters. The translation speeds of the large amplitude numerical solutions are found
to have the same functional dependence on the external vertical shear and the core barocinicity
that was found in the linear analysis, and it is demonstrated that the solutions translate at a rate
which is equal to the background flow speed at the center of potential vorticity of the lens.
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As a test of the model results, new data from a recent SOFAR float experiment are pre-
sented and compared with the model predictions. The data show that the cores of two different
Mediterranean Salt Lenses are tilted, presumably as a result of interactions with external flows.
Both the sense of the tilt and its relation to the translation of the lens are in qualitative agreement
with the model solutions.

Thesis Advisor:
Lawrence J. Pratt
Associate Scientist
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Chapter 1
Motivation

The role played by coherent vortices in the oceanic general circulation is an im-

portant unanswered question. The large property fluxes associated with many of these

vortices indicates that they may have an important effect on the large scale circula-

tion. Among the best known are Gulf Stream Rings, which are evident in many satellite

photographs of the Gulf Stream region. In recent years, new data have shown that

subsurface lenses are also quite common in the ocean. For a good introduction to the

current knowledge of the behavior of mesoscale and submesoscale lenses, the reader is

referred to the review article by McWilliams (1985). Among the better documented

are Mediterranean Salt Lenses (Armi et al., 1989; Richardson et al., 1989) and Arctic

Eddies (Manley et al., 1985). Mediterranean Salt Lenses ("Meddes") are believed to

play an important role in the along-isopycnal transport of heat and salt in the Canary

Basin. Armi and Zenk (1984) have estimated that a single Mediterranean Salt Lens may

contain as much as 10 days worth of Mediterranean salt outflux. Given the large number

of Meddes that have been observed (Richardson et al., 1989), and the large distances

they have been observed to travel, it is possible that they may play an important role in

determining the structure of the Mediterranean Salt Tongue.

With the advent of the SOFAR float as a practical oceanographic tool, it has

become possible to 'tag' an individual eddy, and to observe it continuously for long

periods of time. Beginning in 1984, several Meddies were seeded with floats. One of

these Meddes ('Sharon') was extensively studied during the two year period for which

it was tracked, giving an unprecedented description of the evolution and decay of a

Meddy (Armi et al., 1989). During this time, the Meddy drifted more than 1000 km to

the south, gradually decaying as a result of intrusive mixing (Ruddick, 1988). Armi et

al. (1988) also report seeing numerous patches of salty water outside the Meddy core,

which suggests that 'chunks' of fluid may be periodically lost from the core, presumably

as a result of isolated instability events. Recent work by Hebert et al. (1990) and
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Shultz Tokos et al. (1991) describes the evolution of the size and strength of Meddy

Sharon in detail. Another Meddy ("Meddy 2" in Richardson et al. (1989)) drifted in a

southwestward direction for about 9 months before being catastrophically destroyed in

a collision with the Hyeres seamounts. The data from floats deployed in these Meddies

show that the interaction between a Meddy and an external flow can have important

and readily observable consequences. In Chapter 5 of this thesis new data is presented

which demonstrate one such interaction, by showing that the core of a Meddy can be

deformed by external flows.

It is now appropriate to summarize various essential physical characteristics of

Mediterranean Salt Lenses, which will be referred to often in the following chapters. For

more detailed information, the reader is referred to Armi et al. (1989), or Richardson

et al. (1989). A Meddy is typically 60 km in diameter, 800 m thick, and has a rotation

period of about a week. Velocities within the core are anticyclonic, increase linearly with

radius at any depth within the core, and decay monotonically in all directions outside

the core. Maximum azimuthal velocities of over 20 cm s- 1 have been observed at the

edge of the core. The 3oat data indicate that the rctation rate can vary significantly

with depth inside the core. This is in agreement with recent work by Prater (personal

comminication), who used XCP data to examine the velocity structure of a Meddy.

He found evidence of a marked variation of rotation frequency with depth within the

core. Meddies are strongly localized in the vertical: they are typically centered at about

1100 m, the vertical extent of the core is about 800 m, and they have little or no surface

or bottom velocity signature. The core contains anomalously warm and salty water

(AT - 41C, AS A 1 psu), which is stratified, although the stratification is generally

weaker than that of the surrounding water. The estimated Rossby number for a Meddy

is fairly low: if the Rossby number is estimated by Ro - U/foR, then Ro ;. 0.1, where

the characteristic values U z 20 cm s- 1 and R z 30 km are used for the swirl speed

and radius of a Meddy. Alternatively, if the Rossby number is defined as Ro - (/fo

(where ( is the relative vorticity in the core), then the estimated Rossby number is
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Ro v 0.2. Whichever measure of Ro is used, Ro is small enough for quasigeostrophic

(hereafter QG) theory to be applied with some confidence. The magnitudes of the

shears encountered by Meddies are not well known, but the available data suggest that

the external flow speed may vary by some 2 cm s- 2 over the core region (Saunders, 1981).

These observations show that Meddles are strong vortices, in the sense that characteristic

internal velocities are much larger than external velocities. An estimate of the Burger

number S = N-!), which provides a measure of the aspect ratio of the lens, is also

needed. He!ert (1988) reports a buoyancy frequency of N = 2.5 x 10 - 3 s- 1 within the

core of a Meddy, and if the characteristic values D = 400 m (representing the half-depth

of the lens), fo ; 7 x 10- s s', and R = 30 km are used, it follows that N2 2 t 0.23.

Related Work

Thus far, most attempts to model mesoscale lenses have considered isolated eddy

models, for which the flow vanishes far from the eddy. However, in the ocean such

vortices do not occur in isolation from external flows, and therefore it is important to try

to understand how they are influenced by external flows. An intriguing example of what

may be a consequence of 'Meddy-mean flow interaction' is found in Richardson et al.

(1989). who observed Meddies 'propagating' through the surrounding waters at about

1.4 cm s-1 . An early example of an isolated eddy model is the study by Ikeda (1982), in

which the steady behavior of an homogeneous lens was examined using a 2 layer model.

The vortex was assumed to have formed via the adjustment of an initially cylindrical

intrusion. Gill (1981) conducted a detailed investigation of the steady behavior of an

homogeneous intrusion in a stratified fluid. In Gill's model the lens was assumed to be

infinitely long, and the vertical cross-section was required to be elliptical. Starting with

these assumptions, he was able to solve for the flow field associated with the lens.

Only recently have investigators begun to consider the influence of external flows

on the behavior of such eddies. There have been a number of studies using such non-

isolated eddy models in recent years. The simplest conceptual model is that of Hogg

and Stommel (1990), who used a 21 layer f-plane model to represent the interaction of
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a pMr of point vortices in a vertically sheared flow. Ruddick (1987) used a three layer

model to examine the possible steady configurations for an homogeneous intrusion with

finite Rossby number in a large scale strain/shear flow. He found a maximum strain rate

beyond which no steady solutions were possible. He thus obtained an estimate of the

range of environmental conditions under which coherent vortices could exist. Brickman

et al. (1990) have extended this work to look at the stability properties of Ruddick's

solutions representing a lens in a strain field. Zhmur (1989) has found a class of analyti-

cal solutions representing quasigeostrophic vortices with uniform potential vorticity and

ellipsoidal shape in a stratified fluid with constant vertical and horizontal shear. This

demonstrated that solutions like those found by Ruddick were possible in a more realis-

tic, continuously stratified model. The stability of these solutions was not addressed in

the study. Meacham (unpublished manuscript) has found steadily precessing ellipsoidal

solutions using a model like that of Zhmur, and has used a numerical scheme to ob-

tain steadily precessing solutions with more complex shapes, characterized by three-fold,

four-fold, and higher degrees of symmetry.

The translation of mesoscale lenses was not addressed by any of the previously

mentioned studies, with the exception of Hogg and Stommel (1990). A number of differ-

ent mechanisms have been proposed to account for the motion of Meddy-like vortices.

Several investigations have focused on the role played by ,3 in eddy motion. Nof (1981)

and Killworth (1985) found that analytical solutions were possible in which the lens

drifted steadily westward. However, the be:iavior of these solutions does not resemble

that of real Meddies, which generally drift to the south or southwest. McWilliams et al.

(1986) and Beckmann et al. (1989) have examined the evolution of a lens-like anticy-

clonic eddy on a /-plane using a conventional numerical approach. Both investigations

found that anticyclones on a /-plane tended to drift unsteadily in a southwestward di-

rection, which is qualitatively in agreement with observed Meddy movement. Beckmann

et al. (1989) suggested that the irregularities observed in Meddy trajectories could be

attributed to instability events, in which fluid from the core was lost. More recently,
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Colin de Verdiere (1991) has proposed an interesting mechanism to account for the ob-

served southward translation of Meddies. He suggests that the gradual flattening of the

core due to small-scale mixing processes must be balanced by a southward movement

of the lens on the f-plane. None of the models just discussed includes any externally

imposed flow field, and thus they ignore any advection and distortion of the core by ex-

terior flows. However, the good qualitative agreement between surface drifter tracks and

Meddy trajectories suggests that the large scale external flow may play a significant role

in producing the observed translation. In an attempt to isolate another possible mech-

anism for the observed propagation, Hogg and Stommel (1990) proposed that Meddy

motion could be explained by the interaction between external shears and the verti-

cally inhomogeneous distribution of potential vorticity associated with the Meddy. They

found solutions which translated at a fraction of the speed of the upper layer, provided

that the upper layer flow was not too intense (in which case the vortices were torn apart).

This mode! contains the effect of a baroclinic flow in the "core" of the eddy, which can

interact with external flows, but the singular nature of the potential vorticity field is

highly unrealistic. The idealized nature of Hogg and Storamel's model makes it difficult

to draw meaningful comparisons with oceanographic data. Therefore, it is important

to determine whether similar solutions can be found using a more realistic continuous

(non-singular) model of the potential vorticity field.

Despite the availability of high quality data and numerous modeling efforts, many

questions remain unanswered. Perhaps most importantly, very little work has been done

to test the various models mentioned above using real ocean data. In addition, as

indicated above, the mechanism responsible for Meddy movement is still a matter of

debate. In this thesis, a model has been developed which combines the strengths of

several of the models discussed earlier. While the modeling work is primarily directed

toward Meddies, the results should apply equally well to other mesoscale lenses, such as

those discussed by Richardson (1992, in preparation). The model allows a propagation

mechanism similar to that proposed by Hogg and Stommel (1990), while also allowing
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a realistic stratified flow like that found in real Mediterranean Salt Lenses. We have

found that realistic translating solutions exist, representing a lens in an external shear

flow, and we have examined the behavior and stability properties of a family of steady

solutions.

Overview of the Thesis

The heart of this thesis consists of an examination of a simple f-plane quasi-

geostrophic model, which represents a Meddy as a lens with anomalous potential vortic-

ity in an unbounded fluid with constant stratification. The potential vorticity within the

core of the Meddy is assumed to be linear in z, and the background flow is characterized

by constant potential vorticity. The depth dependent core potential vorticity is consis-

tent with float observations, which show an increase in the rotation frequency with depth

in the cores of some Meddles. In addition, this depth dependence allows the solutions

to exhibit a propagation similar to that found by Hogg and Stommel (1990). The core

of the vortex is bounded by the material surface surrounding the region of anomalous

potential vorticity, which may be deformed by interactions with external flows. While

highly idealized, the simple model allows a qualitative reproduction of many aspects of

the behavior of real Meddes.

The behavior of many of the solutions which have been found is qualitatively

similar to those found analytically by Ruddick (1987). However, the flow field associated

with his model was rather unrealistic, and the model did not allow propagating solutions.

The model employed in this work is far more realistic, since it allows stratification and

realistic vertical structure. The model is closely related to that used by Zhmur, except

that in the present case the core potential vorticity need not be uniform, but can be a

function of z. This introduces new physics into the problem, as baroclinic instability is

possible when the depth variations of core potential vorticity become large. The baro-

clinic core also allows modon-like propagation and the formation of localized extrusions

of core fluid in the numerical simulations. Finally, the numerical algorithm used allows

a direct examination of the stability properties of the steady solutions.

11



In Chapter 2 a highly simplified model consisting of a pair of 'point potential

vortices' in a shear flow is formulated and discussed. This model is actually an extension

of the 'heton' model discussed by Hogg and Stommel (1990) to continuously stratified

fluids. The use of point vortices to model quasigeostrophic flow of a stratified fluid was

first discussed by Flierl (1983). In the point vortex model, the potential vorticity field

associated with the eddy is idealized as a pair of delta functions. The motion of these

vortices provides a conceptual model of the behavior of the first two horizontal moments

of a more general continuous potential vorticity distribution. This often provides a useful

analog to the continuous model, as certain aspects of the dynamics can be illustrated

in their simplest form by a collection of interacting point vortices. For example, it

illustrates very simply the mechanism by which a barocinic vortex interacts with an

external vertical shear, causing the vortex to translate, like the 'heton' solution discussed

by Hogg and Stommel (1990). As a consequence of the extreme simplicity of the model,

nonlinear steady state solutions may be found, and their stability properties determined

analytically.

Chapters 3 and 4 are devoted to an analysis of a model vortex with a lens-shaped

core. The eddy is represented by a lens of fluid with constant potential vorticity in an

ambient fluid with uniform potential vorticity. These model assumptions seem to be in

good agreement with the available data. It is found that the flow field associated with

simple model solutions is in qualitative agreement with the flow measured by Richardson

et al. (1989). The model is sufficiently simple that analytical solutions can in some cases

be found representing a vortex in external shear. In its most general form it has four free

parameters, representing the strength of the external vertical and horizontal shear, the

baroclinicity of the vortex, and its size. In Chapter 3 a family of linearized analytical

solutions is discussed, giving the behavior of the model vortex in weak external shear.

The solutions seem to capture many important aspects of the observed structure and

behavior of Meddies. For example, they have a large core region of trapped fluid which is

deformed by interactions with external flows. The predicted deformations appear to be
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quite realistic, based upon a comparison with the available data (which is the subject of

Chapter 5 of this thesis). Solutions representing vortices with baroclinic cores translate

through the external fluid at a rate proportional to the magnitude of the boundary

deformation. The mechanism responsible for this translation is similar to that found in

the point vortex solutions, and it is speculated that a similar mechanism may be partially

responsible for the observed propagation of Mediterranean Salt Lenses.

While intuitively valuable, the analytical results are only valid within a limited

region of parameter space, and numerical techniques are necessary to characterize the

model behavior in situations where the linear solution is not valid. Furthermore, the

stability properties of the analytical solutions are not known, and the algorithm permits

the stability properties of the solutions to be examined directly. This is the subject of

Chapter 4 of this thesis. The analysis in Chapter 4 focuses on a characterization of

steadily translating solutions which are possible in uniform external shear. These steady

solutions represent the time-average behavior a much larger class of unsteady solutions.

Even with this simplification, the examination of the behavior of the model solutions in

their most general form would require the characterization of the solutions throughout a

four dimensional parameter space - an overwhelming task. For this reason, the numeri-

cal investigation has been further constrained to an examination of the effect of external

vertical shear and variable core baroclinicity on the vortex behavior, thus neglecting the

effects of horizontal shear and variable vortex size. Attention is focused on these param-

eters because the Meddy float data show a core deformation and a translation tendency

which are consistent with the model solutions representing a lens with a barocinic core

in an external vertical shear. It is found that the propagation speeds of the numerical

solutions are accurately predicted by the linear theory. There is a well defined region of

parameter space in which steady solutions can be found: the existence of steady solutions

requires that neither the shear nor the baroclinicity of the core can be too large. The

stability of the steady solutions is then tested by perturbing them slightly and observing

the subsequent evolution of the vortex. This analysis shows that the solutions are in
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general stable, as introducing a small perturbation leads only to a periodic modulation

of the original steady solution. However, the solutions may be unstable if either the

external shear or the baroclinicity is too large. In this case the perturbed solutions are

'drawn out' by the external flow, forming sinuous extrusions of core fluid.

In Chapter 5, new data are presented which show two different Meddies which

are 'tilted', presumably due to the influence of external flows. This tilt was inferred

from a comparison of trajectories of floats at different depths within the same Meddy,

which show a systematic lateral shift of the rotation axis with depth. To the best of our

knowledge, this is the first time that the deformation of a subsurface mesoscale eddy has

been detected. The tilt of the core is generally perpendicular to the drift direction of

the lens, apparently demonstrating a relationship between the deformation of the core

and the translation of the lens. The magnitude and direction of the tilt is found to

be consistent with the predictions of the model discussed in Chapter 3. The Meddies

studied by Richardson et al. (1989) were found to move at 1.4±0.3 cm s- 1 relative to

nearby floats outside the Meddy cores. It is found that the relationship between the

sense of the tilt and the translation is qualitatively in agreement with the model, but

the predicted model velocities are significantly less than observed velocities.

Derivation of Equations

In this section we derive the quasigeostrophic equations, and the related equations

which govern the behavior of the models discussed in Chapters 2, 3, and 4. The special

form of the evolution equations used in the contour dynamics calculations is also derived.

The Navier-Stokes equations for a stratified, incompressible fluid on a 8 plane (see, e.g.,

Pediosky, 1987) may be written:

D.u (O += -Poz-- p.(1.1)

Dt. Ox".
Dr.D.V, OP.

D.+ (fo + =Y)U -Po. 0y"
D.w. 1 Op.
Di. P. Oz.
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D.p,
---O 0

Dt.
Ou. +8v. + z8W. o

=_, 8t. + U.A.. + .8. + W.Dt.

where stars denote dimensional quantities. These equations will now be specialized for

quasigeostrophic motions characterized by a depth scale D and a horizontal scale R.

Specifically, we shall focus on lens-like phenomena like that shown in Figure 1.a. We

begin by nondimensionalizing the set (1.1). The velocity is scaled by a.R, where a. is

the average value of the quasigeostrophic potential vorticity within the lens. Letting

p. = po. + p, and p. = po. + p', where the primed variables represent small anomalies

on a hydrostatically balanced basic state, and introducing the nondimensional variables

(Z.y) = (z.,y.)/R, z = z./D, t = t.a., (u,v) = (u.,v.)/(a.R), w = w./(bfa.R),

I = p./(po.foa.R2 ), and p' = gDp'./(po.foa.R2 ) gives the dimensioiiless set of equations

(Ut + UU -+ vuy + +wu") - (+ -y)v = -pz (1.2)

f(vt + uv, + vvy + wvz) + ( +  u = -pl

6 2 f 2 (wt + UWt + VW + ,EWWz) = p. - p

p't + up, + vp, + ewp" = WS(Z)

U, + 4V + ewz = 0,

where f = a./fo is a Rossby number, 6 = DIR is the aspect ratio of the vortex, S(z)

is the stratification parameter (defined by S(z) = N 2D2 /fJ2R 2 ), and 4 _ #R/fo. When

S(z) = 0(1) and e - 4 < 1, the set (1.2) can be expanded in powers of e to obtain the

quasigeostrophic potential vorticity equation for synoptic scale motions

9t - Oyq. + V,.qy = 0, (1.3)

q = 0.. + OYU + (S-0..) + -Y,

where the geostrophic streamfunction ¢ is defined by

u = -0y, (1.4)
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The dynamical importance of the 8 effect in QG theory is measured by the pa-

rameter 1R 2 /U, which for a Meddy is small 3R2/U , 0.04 : 1, so that the f plane

approximation should be quite good. Furthermore, for simplicity, only the special case

in which S is approximately constant will be considered, so that q can be written in the

approximate form

q 0 x + ,ky + S-10b.z . (1.5)

To examine the effect of an externally imposed flow on the vortex, it will be

convenient to divide the flow field into two components: that associated with the vortex

itself, and a specified external shear flow

0' = 0. + Ob. -(1.6)

The vortex flow is assumed to vanish at large distances, while the background flow may

extend to infinity. The streamfunction for the external flow is defined by

Ob,- + 'b,yy/ + S-l"b,zz = qb = a constant. (1.7)

Because qb is constant there is no ambient potential vorticity gradient, and the effect of

the background flow is therefore purely advective. The only potential vorticity gradients

are therefore those associated with the jump in potential vorticity across the vortex

boundary. We shall choose 'Pb to be of the form

Pb = -aYz + 1 (1.8)

which represents a zonal flow with constant vertical and horizontal shear:

Ub = az - qb• (1.9)

Of course this is not the only possible form for the external flow that satisfies (1.7),

but it will be sufficient to allow an examination of the qualitative effects of large scale
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external shear on the vortex. Notice that there is no barotropic flow component. This

is because it is assumed that the coordinate system has been chosen to translate at the

mean external flow speed. The dimensionless parameters a and q, are defined by

qb =

a.D
Ct = -. -,

(1.10)

where a. is a dimensional measure of the vertical shear of the background flow. We note

here that this form for the external velocity field is more general than it might seem,

as any slowly varying external flow field may be locally represented in this form using a

Taylor series expansion. This representation should be adequate as long as the external

flow varies on length scales much larger than the size of the lens.

In the following chapters two special forms for the potential vorticity field will be

considered in some detail. The most important case is the one in which the potential

vorticity is horizontally piecewise constant, which provides a useful idealization of the

potential vorticity field of a Meddy. The second case is that in which the potential

vorticity field is represented by a pair of delta functions. In Chapter 2 we shall see that

this simple model is capable of reproducing many aspects of the behavior of the more

complicated continuous model. To model a lens-shaped eddy, it is assumed that the

potential vorticity field can be written in the form 1

q. = qb. + (a. + b.z.)%(B) , (1.11)

where the boundary of the vortex is made up of those points satisfying the relation

B = 0. (1.12)

"/(B) is fihe Ileaviside step function. It has a value of unity if B > 0 (i.e., in.side the vortex), and a
valut of u if 5 < II (outside the vortex).
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Equation (1.11) represents a blob with potential vorticity q. = a. + b.z. + qb. inside, and

q = qb. outside. Then the equation for the streamfimction 4 is

q = 0.. + O',, + S-'O, = qb + (1 + bz)1"(B) (1.13)

, -- b, r -oo,

where

b b. . (1.14)
a.

Because S is a constant, the transformation

Z ,Z/ (1.15)

transforms (1.13) to Poisson's equation. Thus, (1.13) takes the form

q = 4'x + y + Ozz = q6 + (1 + bS-1/ 2z)7"(B) , (1.16)

4' - b, as r-*oo.

The flow associated with a potential vorticity field of this form depends upon the shape

of the vortex boundary, and on the value of the parameter b, as well as on the imposed

external flow. When the core is monopolar (b = 0) and z axisymmetric, and the flow

vanishes far from the vortex (a = qb = 0), then the flow inside the core is in solid body

rotation, and velocities decay monotonically outside the core (see Figure 3.2a). When

b is nonzero the flow in the core is vertically sheared (see Figure 3.2b). In transformed

space, the streamnfunction for the background flow becomes

Ob =  -oS-1/2lz + -qbY , (1.17)
2

where a and qb are measures of the external shear. Notice that in transformed space

both the vertical shear and the baroclinicity depend upon the size parameter S. This

is because in transformed space, varying the radius R of the lens results in a vertical

stretching or squashing of the lens. The shear a and the barocinicity b must therefore be
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scaled accordingly if the external flow speed variation and potential vorticity variation

over the core depth are to remain fixed.

In summary, the equations governing the behavior of the model vortex are:

qt - Oyq. + + ,qy = 0 (1.18)

q = 0 . + Y + Z
-b= qb + (1 + z)(B)

'P "- 'Pb r-,oo

'Pb + r -- / b •

Tlim ,nodei parameters are defined by

= a. (1.19)
a.R
qboqb -"
a,

N 2D 2

=fOIR
2

b =b-D ,
a2,

where b is a measure of the baroclinicity of the lens, qb measures the magnitude of the

external horizontal shear, and a measures the vertical shear of external flow.

Equation (1.18) seems to imply that decreasing the stratification parameter S

has the same effect as increasing the baroclinicity b. However, it turns out that this

is not true, since changing S also changes aspect ratio of the lens (which is manifested

as a vertical stretching or squashing of the surface B = 0). This can be easily seen

by considering the special case in which the vortex boundary is given in dimensional

variables by

1 - (x.! + y.)/R 2 - z./D2 = 0, (1.20)

representing a spheroid with aspect ratio A (see Figure l.la). After nondimension-

alizing and carrying through the coordinate transformation (1.15), one finds that the

19



transformed boundary is given by

B = z 2 + y 2 + z 2 /S_ 1 = 0. (1.21)

This describes a spheroid with aspect ratio VS, which will be spherical only in the special

case in which S = 1 (i.e., R = ND/o). In Chapters 3 and 4 we will consider a model

of a lens for which S = 1. A lens with radius larger than ND/fo is oblate in transformed

space; a lens with radius less than ND/fo is prolate.

The time evolution of the flow can be found by integrating the potential vorticity

equation (1.18a). For the special class of flows characterized by the potential vorticity

(1.16), this equation takes a particularly simple form. This expression can be obtained

by substituting the diagnostic relation between q and 0/ given in (1.16) into (1.3a). This

gives a kinematic boundary condition, which is needed to ensure that the boundary of

the lens is a material surface. One finds:

(Ot + 0.8y - OyO.)(qb + (1 + bS-1 / 2 z)7"(B)) = 0, (1.22)

and it follows that

(1 + bS-'1/2z)6(B)(0t + o - ,)B = 0. (1.23)

Thus when B = 0 the condition

(49 + 0=a - 00)B = 0 (1.24)

must be satisfied. This is the kinematic boundary condition which will be used in

Chapters 3 and 4 to determine the evolution of the flow field.
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Cx2 + y2 + Z 2

S

Figure 1.1: Schematic showing how the boundary of a lens which is a prolate spheroid with
aspect ratio DIR is changed by the various coordinate transformations discussed in this chap-
ter. Schematic of lens shape (a) in the ocean, (b) in nondimensional space, and (c) after the
transformation (1.15). In transformed space the lens is a spheroid with aspect ratio Vf.
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Chapter 2
A Simple Point Vortex Model

Introduction

In this chapter the behavior of a quasigeostrophic vortex in a shear flow will be

examined using a very simple point vortex analog. The model consists of a pair of three

dimensional 'point potential vortices' with strengths QI and Q2 in a flow with constant

vertical and horizontal shear. The point vortices are advected by the background flow

as they go around one another due to their mutual interactions. This seemingly simple

situation allows for a rich variety of behaviors. The point potential vortex model used

here is closely related to that discussed in the review by Flierl (1987), while the systematic

application of the point vortex ansatz in examining the stability and propagation of

oceanic mesoscale lenses can be traced to recent work by Hogg & Stommel (1990). It will

be convenient to think of the point vortex pair as a crude representation of the behavior

of the first two horizontal moments of some more general continuous potential vorticity

distribution. The separation of the vortices represents the size and deformation of the

analogous continuous vortex, while their strengths represent the integrated potential

vorticity in the upper and lower halves of the vortex, respectively. In the next chapter,

it will be seen that the point vortex model often anticipates the behavior of a continuous

vortex subject to low mode forcing (that is, in a gradually varying background flow), as

a low mode forcing typically produces a low mode response.

In this case the flow consists of a pair of point vortices located at (.Ti,y, z1 )

and (Z2, Y2, z2) in an external flow with constant potential vorticity, and therefore the

equation for the streamfunction is

OZZ + Oyv qb +47rQ6(- f,) +47rQ 2 6(f- 2 )

' b (r- oo) (2.1)

where Qi and Q2 can be written in the form

Q 1 + A, (2.2)
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Q2= 1-A.

A measures the antisymmetric component of the potential vorticity field, and it follows

from (2.1) and (2.3) that A = 0 implies that the vortices have equal strengths, while the

limit A - oo represents two oppositely signed vortices. The point vortex configuration

is sketched in Figure 2.1.

It is easily verified that a solution to (2.1) is

= Ob Q- Q2 (2.3)
- i' ir'- r21

Ob = -ayz + -%2

This is not the most general form for Ob, but it will be sufficient for our purposes, as

it represents a flow with both vertical and horizontal shear. Because the point vortices

are material particles, they must move at the local flow speed, and it follows that their

motions are given by

d -,, 8 , (2.4)
dt y
dy,, _ 80 b

for n = 1, 2. Taking the horizontal gradient of (2.3), using (2.4), and evaluating the

result at the positions of the vortices gives a coupled set of equations governing their

motions. Thus, the motion of two QG point potential vortices in a zonal flow given by

u= az - qby is governed by

i = - + Y z2 - qbYI (2.5)-1(F, - 13)
r2 = - QI -2 YO + Cz2- qbY2

Q2(z1 - Z2)
= - 21)

QI(T2 - --I)
- 2 13

l= 0

12 0.
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(.5

Figure 2.1: Schematic of two point potential vortices of strengths Q, and Q2 in a background

flow with constant shear.
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Notice that the velocity of each vortex is equal to the sum of the velocity induced by the

other vortex plus an advection by the background flow. I The last two equations are a

consequence of the quasigeostrophic nature of the flow 2. In Figure 2.2 the velocity field

is contoured for a single point vortex in a quiescent fluid. Notice that when z 9 0, the

velocity peaks some distance away from the vertical axis.

Figures 2.3a through 2.3i show the trajectories of two point vortices with strengths

Q1 = 3/2, Q2 = 1/2, for various initial configurations. These were obtained by

integrating the equations (2.5) numerically. In each case the trajectory of the stronger

vortex is shown by a solid line, that of the weaker vortex by a dash-dotted line, and that

of their center of potential vorticity (Q 1F1 + Q2F2)/(Q1 + Q2) by a dashed line. The

vortices are positioned such that there is initially no net advection by the background

flow. In these runs the vortices are initially at zI = X2 = 0, z1 = 1, z2 = -1, and the

initial y positions are symmetric with respect to the x, z plane. Figure 2.3a shows that

in the absence of external shear the vortices describe circular orbits about their common

center of vorticity. In 2.3b a very small external vertical shear is introduced, with the

result that the orbits no longer close on themselves, and there is a slow drift to the

right. The remaining plots show translating vortex pairs in external shear. Figures 2.3c

through 2.3e show the vortices in horizontal shear (a = 0.0, qb = -0.05); Figures 2.3f

through 2.3i show them in vertical shear (a = 0.05, qb = 0.0). In each of these sequences,

the external shear is held fixed, and the initial y separation of the vortices is varied. In

2.3c the initial y separation Y2 - Y1 is -2.78, in 2.3d it is -2.0, and in 2.3e it is -1.0. In

2.3f the initial separation is -3.70, in 2.3g it is -0.448, in 2.3h it is 0.0, and in 2.3i it is

+1.0. These runs are summarized in Figure 2.5, in which the phase plane behavior of

the vortex pairs is shown.

The mechanism behind the propagation of the vortex pairs is quite simple, and

can be seen in its purest form in the propagation of a purely antisymmetric pair (Qi "

'Ar is ('u-ton,),rv. R dol (detoies a derivative with resi)('t to lirlI.
'N ym.in .geowcrophic theory. advect.ioIIs are assumed to he 1Irely horizotl iiand Ilrifore Ihe z

coordinates of t he vorlices canI, change.
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Figure 2.2: Contour plot of velocity field for a single point vortex. The dashed lines connect the

points at which the velocity is maximum as a function of perpendicular distance from the z axis.
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• . S.U

--.. ...... -

Figure 2.3: Point vortex trajectories obtained by integrating (2.5) in time. Plot (a) shows two

point vortices circling one another in a quiescent fluid, (b) demonstrates the effect of adding a

weak external vertical shear. (c)-(e) show the two vortices in horizontal shear (for various initial

separations), and (f) through (i) show them in vertical shear.
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1, Q2 = -1) in a quiescent fluid. This situation is shown schematically in Figure 2.4. For

such a pair, the circulations of the vortices are of opposite signs, so that the advection of

the second vortex by the first vortex is in the same direction as the advection of the first

vortex by the second. This leads to a net translation of the vortex pair. The propagation

mechanism is much the same when the vortex pair is not purely antisymmetric, except

that in this case an external shear is needed to counterbalance the influence of the

symmetric component of the potential vorticity field, giving the vortices a preferred

orientation (in a time average sense) with respect to the external flow.

It will be convenient to cast the set (2.5) in a new form, which explicitly decouples

the translation of the vortices from their relative motions. We shall see that in consid-

ering the relative motions of the vortices, the antisymmetric component of the potential

vorticity field (given by A) drops out of the problem entirely. A is only important in

determining the translation of the vortex pair as a whole. For convenience the notation

'(Al - 22), Y = (YI - Y2), Z '(z 1 - z2 ), R S (2X) 2 + (2Y) 2 + (2Z) 2

Ub,1 = -1yO If',, Ub,2 -O,'Pb If2, U = (ub,1 - ub,2), is introduced, after which sub-

tracting (2.5b) from (2.5a), and (2.5d) from (2.5c) (and recalling the definitions of Q,

and Q2) gives:

= -Y/R 3 + aZ - qbY (2.6)

S=X/R

and of course

z-0.

The set (2.6) describes the evolution of the relative displacement of the two vortices.

Notice that A does not appear, implying that the evolution of the displacement (for

a given initial vortex configuration) is uniquely determined by the external flow for all

values of A.
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Figure 2.4: Schematic of mechanism by which oppositely signed point vortices can 'self propagate'.

The upper vortex is advected by the anticyclonic flow of the lower vortex, causing the upper vortex

to move to the right. At the same time, the lower vortex is advected to the right by the cyclonic

flow of the upper vortex, causing the pair to move to the right.
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In a similar fashion, adding (2.5b) and (2.5a), and (2.5d) and (2.5c) gives an

expression for the motion of the center of the vortex pair:

= +AY/R3 +wb (2.7)

= -AXlR 3 ,

where the overbar denotes a spatial average (e.g., 2 = (ZI + z2)/2). Equation (2.7) says

that geometric center of the pair moves under the combined influence of the background

flow and the advection due to the antisymmetric component of the potential vorticity

field. Notice that the set (2.6), (2.7) are equivalent to (2.5), as once X, Y, t, and g

are known, the positions f'n of the vortices can be readily computed, since z, = 2 + X,

X2= - X, etc.

Phase plane behavior

To study the behavior of nonequilibrium solutions to (2.6) , the equations can

be integrated numerically and the solution trajectories plotted in (X, Y) space. To do

this, it is convenient to introduce a new streanfunction q? describing the relative vortex

motions, defined by

*X = +(2.8)

Ty =-X.

After making use of (2.6), (2.8) may be integrated numerically to get %F. The streamlines

= constant give solution trajectories in (X, Y) space. Fixed points represent steadily

translating configurations, while closed trajectories represent solutions which are periodic

in a translating reference frame. Saddle points represent unstable steady solutions;

centers represent stable steady solutions. It will be seen that all solutions are periodic if

the external shear is not too large, and are nonperiodic otherwise.

First consider background flows with purely horizontal shear. The phase plane

plots are shown in Figure 2.5a. The qualitative behavior of the solutions depends on the

sign of qb. When qb is negative there are three fixed points in (X, Y) space, representing
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Figure 2.5: Phase plane behavior of point vortex pairs in (X, Y) phase space. (a) represents the

case in which the vortices are in horizontal shear (q, < 0), (b) represents the horizontal shear

ease as weli, but with (q, > 0), and (c) represents the case in which they are in vertical shear.

The fixed points represent steadily translating point vortex configurations. The 'o' in Figure 2.5a

represents the run in Figure 2.3c, the '+' represents the run in 2.3d, and the 'x' represents that

in 2.3e. The 'x' in Figure 2.5c represenlts the run shown in Figure 2.3f, the '4' represents 2.3g,

the '0' represents 2.3h, and the '*' represents the run in 2.3i.
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steady configurations. The first is a stable 3 fixed point (a center) at X = Y = 0

surrounded by a region of closed trajectories, representing periodic solutions. There

are also two unstable fixed points, situated at the saddle points on the Y axis. These

represent configurations in which the vortices are displaced in a direction perpendicular

to that of the external flow. The symbols in the plots represent the initial configurations

for the numerical runs shown in Figure 2.3. The 'o' located near the saddle point in

Figure 2.5a represents the run in Figure 2.3c, and it shows that the run was very close

to an unstable steady solution.

When qb is positive there is just one fixed point (as shown in Figure 2.5b) - the

same stable fixed point at the origin discussed earlier. In this case, however, there are no

other fixed points, as the background shear is of the wrong sense to balance the motions

of the vortices. It is worth noting that in this case all the trajectories are closed, so the

vortices cannot be carried arbitrarily far apart by the flow, and therefore they remain at

least weakly coupled for all time. This implies that any coupled vortex configuration of

this kind (not necessarily steady) is more robust when q, > 0 than when qb < 0.

For a vertically sheared background flow the situation is quite different, as Fig-

ure 2.5c shows. In this case there are two fixed points - one stable, one unstable. Both

of these represent configurations which are 'tilted' by the background flow. The saddle

point near the bottom of the figure represents a strongly tilted unstable configuration;

the center near the middle of the plot represents a weakly tilted stable configuration.

The '+' represents the initial configuration for the run in Figure 2.3g, which was clearly

close to the stable fixed point. The 'x' represents the run in Figure 2.3f, which was

close to the unstable fixed point. There are no solutions representing vertically aligned

('untilted') vortex pairs, as were found in the horizontally sheared case. As 1/UZ 2 de-

creases, the region of closed trajectories surrounding the stable fixed point gets smaller

until eventually no bound states are possible.
'1-iiq qOl11io1 is 5.t hle, since. when pert urhe.I. the s -sleku f;ltk onto one of the closed Irn -cIlories

ndiace e 1o the fixed point, and hence remainsf "itvar' lhe uuperlirhed salwion for all time.
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Steadily translating point vortex pairs

Now (2.6) can be used to examine in detail the character of the possible steady

solutions. These solutions will correspond to the fixed points in the phase plane diagrams

just discussed. However, they will be somewhat more general, as each of the phase plane

plots applies to a specific parameter setting, while the present analysis will give the

positions of the fixed points as functions of the model parameters a, qb, etc. Setting

= I= 0 gives

X8 = 0 (2.9)

(so all steady configurations must be perpendicular to the background flow) and hence

also
1 Z)3/2Y. = aZ - qbY , (2.10)

where the subscript s denotes a steady solution to (2.6). Equation (2.10) is simply the

mathematical statement of the fact that for a steady solution to exist, the tendency of

the background flow to tear the vortices apart must be exactly counterbalanced by the

mutually induced velocities.

For our purposes it will be sufficient to solve (2.10) graphically. Consider first

a horizontally sheared background flow, in which case a = 0 , and (2.10) is satisfied if

either

Y, 0 O, (2.11)

or

1,2 + Z.-(-1)2/3. (2.12)
qb

Thus, either 1'. = 0, so that the vortices are right on top of each other, or else they lie
on a circle (in (Y., Z,) space) of radius (=)1/3, as shown in Figure 2.6. The three steady

solutions represented in Figure 2.6 correspond to the three fixed points in the phase

plane diagram shown in Figure 2.5a. Configurations lying along the circle represent

vortex pairs which are displaced in a direction perpendicular to the background flow.

Notice that if -L > 0, the radius (=-i)1/3 of the circle is negative, implying that no
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Figure 2.6: Possible steady configurations for a point vortex pair in a horizontally sheared flow.
The steady configurations lie either on the Y axis, or on a circle of radius (-qb) - 1/ 3 in (YZ)
space. The 'o' symbols represent the three possible steady solutions for some fixed Z (Z <
(-qb)-3/3).
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solutions of this type exist. In this case the background shear is of the wrong sense to

counterbalance the relative motions of the two vortices, and the only possible steady

solutions are those with Y. = 0.

For vertically sheared background flows the situation is somewhat different. In

this case qb = 0 and (2.10) may be written in the form
1

Z.3 = (1 + Y/Z) 2)3/2. (2.13)

Thus the 'tilt' of the vortex (as measured by the quantity Y./Z.) is a function of one

parameter: -2, which is related to the ratio of U.,t,. to U.,o,,.- Using well known

properties of cubic equations 4, it can be shown that there are no real solutions when

(-) 2 < 27/4, one when ( 1-)2 - 27/4, and two solutions in every other case. Notice

that, in contrast to the case with horizontal shear, the sense of the background shear is

not important, since cnanging the sign of a simply changes the sign of Y/Z,. In the

context of Figure 2.5c, this amounts to reflecting the entire plot about the X axis. On

the other hand, Figures 2.5a,b show that changing the sign of qb has a profound effect

upon the qualitative behavior of the solutions.

Figure 2.7 shows the roots of (2.13) as a function of -' Notice that the roots

get farther apert as J increases. The smaller of the two roots represents a pair which

becomes increasingly aligned in the vertical as -1 increases, corresponding to the center

in Figure 2.5c. The larger root represents a pair which becomes increasingly tilted, and

it corresponds to the saddle point in Figure 2.5c. The fact that there are two possible

steady configurations is due to the special character of the point vortex flow field. Recall

from Figure 2.2 that as one moves horizontally outward from the z axis at some level

z = zo i 0, the azimuthal velocity first increases, then peaks and decreases monotonically

to zero. Now, for a steadily translating configuration to exist, the tendency of the vortices

to move with respect to one another must be precisely counterbalanced by the differential

advection by the background flow. There will be two separation distances at which this

'Thi,- becones a cubic equation for Y./Z, after sqpiarivi| both sides.

40



3

2-

1.53

1

0.5-

0
0 1 2 3 4 5 6 7 9 10

1/(aZ3)

Figure 2.7: Roots of (2.13), representing steady configurations in a vertically sheared external
flow. The vertical axis measures the tilt of the pair, while the horizontal axis is inversely propor-
tional to the strength of the external shear. The upper (dashed) branch (representing strongly
tilted pairs) represents unstable steady solutions, while the lower branch represents stable solu-
tionq. If the external shear is too large (-w< V-/4), there are no steady solutions at all.
Notice that along the stable branch the vortices get farther apart as the shear increases (assuming
that the vertical separation Z, is fixed), while the opposite is true for the unstable branch.
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can occur (provided that the shear is not too large), since the azimuthal velocity takes

a given value at two different radial distances.

Stability Analysis

The stability properties of the steady solutions just discussed will now be exam-

ined. This analysis will allow a determination of the region of parameter space in which

the solutions are realizable. Our approach will be to superimpose small perturbations

on the steady solutions, and then to deduce whether the perturbations grow by solving

linearized stability equations. Putting X = X, + X', Y = Y, + Y', Z = Z, + Z' in (2.6),

there follows:

_= -(y7 + Y')/((X. + X') 2 + (Ya + y,) 2 + (Z' + Z') 2)3 /2 + a(Z, + Z') - qb(Y. + Y'),

P" = +(X. + X')/((X. + X') 2 + (Y0 + y,) 2 + (Z, + Z')2 )3/2

= . (2.14)

Assuming that the perturbations are small (i.e., X' 2 + y12 + Z12 < X2 + Y,2 + Z2), these

may be written in the approximate form

- ( ~ (. + Y') (1 - 3(XX' + Y.Y' + ZZ')/R) + a(Z. + Z') - qb(Y. + Y')
(X.2 + Y 2 + Z.2)3/2

+ (X, + X') (1 - 3(XX' + Y5Y' + ZZ')/R2). (2.15)(X.2 + Y.2 + Z.2)3/2

Using the steady state balance (2.10) and discarding terms quadratic in perturbation

quantities gives coupled, linearized evolution equations for X' and Y':
. 1 3y/2  

3

-+ (1 - + qb)Y' = ( + Z,)Z' (2.16)

tl,_ 1 , 0

These may be combined to give

d2X'/dt2 + U2XI = O, (2.17)

d2l,'/dt2 + P21y, = 1 - ( a+L !)L+ Z)

2~~ 0 )

R6, (1 - 3Y+/R0 + qbR2
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from which it follows that X1 and Y' will be oscillatory if p2 > 0, and will grow exponen-

tially in time if p2 < 0. The forcing term NI(a + 3Y Z,)Z' does not affect the stability

of the solutions, so in what follows we shall set Z' 0 0. The stability of the system is

thus governed by two dimensionless quantities: Y./R., measuring the tilt of the pair,

and q&R,, which measures the jump in the background flow speed (U) between the two

vortices. Although the expression for p2 does not explicitly contain a, the influence of

vertical shear is implicit, as Y./R, depends on a.

Because 0 < Y 2/R! = Y.2/(Y. 2 + Z2) S +1, it follows immediately that all

solutions are stable when qbR,3 > +2, and are unstable when qbR3 < -1. Thus, vortex

structures are apparently more readily destabilized by 'adverse' horizontal shears (qb <

0), than by favorable shears (those for which qb > 0). Recall from the last section

that for flows with purely horizontal shear there are either one or three fixed points,

depending on the sign of qb (see Figure 2.5a). Whatever the sign of qb, there is a root

with , = 0, corresponding to the case in which the vortices are vertically aligned. In

this case p2 = (1 + qRV), so the solution is unstable if qbR, < -1. Therefore, this root

is unstable only in strong adverse shears. When qb < 0 there are two additional fixed

points, which lie on a circle in (Y., Z.) space, as shown in Figure 2.6. Their positions are

given by y 2  (.1)2/3 _ Z2, and it is easy to show that in this case p 2 = 3(Z2(qb) 2 /3 _ 1).
96b " q

However, Figure 2.6 shows that Z 2 ! (1/qb) 2 / 3 for all solutions, so p 2 is necessarily

negative, and so these solutions are always unstable. This is consistent with the saddle

point character of the top and bottom fixed points in Figure 2.5a. Thus, the only stable

configuration in horizontal shear is the one in which one vortex is directly above the

other.

For a vertically sheared background flow, a is nonzero, qb = 0, and it follows from

(2.8) that steady solutions are unstable if Y 2/R2 > 1/3 (that is, if the vortex pair is too

strongly tilted). Interestingly, the stability limit Y,2 /R2 - 1/3 describes configurations

in which the vortices lie along the lines z = ±yv/2 in Figure 2.2. Thus, these lines are

curves of marginal stability, and it follows that the sectors above and below the vortex
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can be thought of as 'stability wedges', as there are no stable steady solutions for which

the vortices lie outside of these wedges. From our earlier discussion of the character of

the vortex flow field, it is apparent that outside the stable sectors (Y*2/R.2 > 1/3), the

vortices interact less strongly when separated, while within these sectors (Y,2/R2 < 1/3),

they interact more strongly when separated slightly (the 'strength' of the interaction is

measured by the speed of the relative motions of the two vortices caused by their mutual

interactions).

We have demonstrated that steady configurations in vertical shear will be unstable

if i-/R2 > 1/3. However, it is not immediately obvious from (2.13) whether any solu-

tions satisfying this inequality exist. To answer this question, notice that Y 2/R! > 1/3

implies that Y/Z. > VT72. A glance at Figure 2.7 shows that there are no real roots to

(2.13)when -n< V/7T, and it is easily shown that Y/Z. = VI when y - V/7-4-

Therefore, whenever - > V/7T4, Figure 2.7 shows that there is a root for which Y/Z,

is larger than V/q7, and another for which Y/Z, is less than V72. Thus, the larger

root represents a steady solution which is always unstable, corresponding to the saddle

point in Figure 2.5c, while the smaller root represents a solution which is always stable,

corresponding to the center in Figure 2.5c.

Propagation of the Point Vortex Pairs

Recall from (2.7) that the equations governing the translation of the geometric

center of the pair are

= +y/R 3 +

y= -AX/IR 3 .

The first term on the right hand side represents the tendency of the vortex pair to

propagate. Combining these with the equations governing the displacements (X,Y)

(2.6), one obtains

d
S(f+AX) = + AU
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(P + AY) = 0. (2.1)

Now, it can be shown that + AX is actually the z coordinate of the 'center of potential

vorticity' of the component of the potential vorticity field due to the vortices themselves.

Similaily, 0 + AY is the y coordinate of the center of potential vorticity, since it follows

from the definitions of A, 2, 9, X, and Y that

(.t A&X)- Q1zi + QW 2 -< x >
QI+Q2 -

(+ AY) Q1y' + Q2Y2 =<y> (2.19)
Q1+Q2 -

Therefore, after employing the definitions of ub and U, we find that the center of potential

vorticity (< z >, < y >) moves according to

d
< z > = -qby + A(OZ - qbY)

= AaZ-qb<y>

d
=< y >  = 0. (2.20)

The second of these states that < y > is constant. It follows that < z > is a linear

function of time, since the right hand side of (2.20a) is constant. Therefore, the center

of vorticity of the pair must move with constant speed

uo=AaZ-qb<Y> • (2.21)

Notice that this is true for all solutions, not just steady ones - even if the vortices

go around one another in some complicated fashion, their mutual center of potential

vorticity moves in a straight line with constant speed. This can be clearly seen in

Figure 2.3, where the dashed line shows the path of the center of potential vorticity.

Finally, using the definitions of < y > and < z > (2.19) it is easy to show that

Uo = Ub(< y >, < z >) , (2.22)

which shows that the speed of the pair is given by the background flow speed at the

center of potential vorticity.
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What is the physical mechanism which causes the vortex pairs to propagate? The

translation is due to a modon-like propagation tendency of the dipolar component of

the potential vorticity field. The modon character of the translation can be seen more

clearly if propagation speed is written in terms of the separation of the pair. To do this,

notice that for steadily translating configurations (2.6) shows that aZ - qbY = Y/R 3 ,

which simply says that in the steady limit the separation of the vortices is fixed by the

external shear. Therefore, we may write

uo = AY/R 3 - q&II. (2.23)

The first term on the right hand side represents the part of the translation speed which

is due to the self interaction of the antisymmetric component of the potential vorticity

field, while the second term represents a bulk advection by the background horizontal

shear. The first term is most interesting, since it represents a modon-like propagation of

the pair. When Y , R, c increases approximately linearly with Y due to the increasing

interaction between the vortices. Thus if Y <c R, an increase in the external shear

requires a similar increase in Y for a steady balance to be maintained. This in turn

leads to greater interaction between the vortices, and hence a larger propagation speed.

Next. notice that AY/R 3 is precisely the propagation speed of an antisymmetric pair with

strengths ±A in a quiescent fluid. Thus, the vortex pairs can be thought of as monopoles

with antisymmetric 'riders', which lead to propagation. The mechanism behind the

propagation of unsteady vortex pairs is similar: the unsteady pairs have an average

dipole moment which leads to propagation in a fixed direction.

Summary

A variety of solutions representing pairs of point potential vortices have been

discussed. The vortex-vortex interactions combined with the influence of the imposed

background flow on the vortex pair allow for a rich variety of possible behaviors. It was

found that modon-like propagation can occur when the vortices are of opposite sign.

The vortex pair may also translate with respect to the ambient fluid when the vortices
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have the same sign, provided that there is a background flow of the appropriate form

and an antisymmetric potential vorticity component. The propagation mechanism is the

same in both cases: the antisymmetric component of the potential vorticity field causes

the vortex pair to 'self propagate'. There is no inherent limit on the antisymmetry A

of the pair. Changing A changes the translation speed of the vortex pair, but does

not alter the shape or the stability properties of the solutions. The difference between

propagation in a quiescent fluid and propagation in shear is that, in the latter case,

a certain minimum symmetric component is needed to keep the vortices aligned (in a

time average sense) with respect to the external flow. Solutions periodic in a translating

reference frame were found for both horizontally and vertically sheared background flows.

Stable, steadily translating solutions of this type exist in vertically sheared background

flows, but not in horizontally sheared flows. In horizontal shear, all tilted configurations

were found to be unstable. The point vortex solutions discussed here will be referred

to often in the next chapter, when a model of a continuous vortex in an external shear

is discussed. It will be seen that the point vortex pair often represents quite well the

behavior of low mode disturbances on a continuous vortex.
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Chapter 3
A Simple Model of a Quasigeostrophic Vortex in a Stratified Fluid

Introduction

In this chapter a simple model of a three dimensional quasigeostrophic vortex

embedded in a uniformly sheared background flow will be examined. It is well known

that steadily translating solutions can be found when u --* 0 as r --1 oo. A classic example

of this in two dimensional flow is the 'Batchelor modon' (Batchelor, 1967, p. 535). In

the present work, a related family of solutions is discussed, representing a lens-shaped

quasigeostrophic vortex in a continuously stratified fluid. The propagating solutions have

potential vorticity which varies with depth in the vortex core, which allows propagation if

the core of the vortex is 'tilted' with respect to the vertical axis. A variety of steady and

unsteady solutions will be discussed, representing translating and nontranslating vortex

solutions. Initially, the case of a monopolar vortex in a quiescent fluid is addressed, then

a uniform external shear is added, and finally the effect of baroclinic flow in the core

is examined. The results show that both external vertical shear and depth variation of

the potential vorticity within the core are necessary for vortex propagation, and that

the propagation speed is proportional to the size of the boundary deformation. It is

found that there is a limiting core baroclinicity beyond which no steady solutions exist.

The results which will be discussed are linearized analytical solutions, and their validity

requires that both the external shear and the deformation of the vortex boundary are

small.

The approach taken will be to consider small perturbations superimposed on a

basic state flow which is an exact steady solution to the potential vorticity equation.

For flows characterized by a potential vorticity field which is piecewise constant in the

horizontal, the entire flow field at each instant is determined by the position of the

vorticity fronts, and it follows that the evolution of the entire flow field is determined

by the motion of the front. To simplify the mathematics, the vortex is assumed to be of

radius R = ND/fo, where D is the half depth of the lens, N is the buoyancy frequency,
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and 10 the coriolis parameter, and it follows that the Burger number S = N 2D2 /foR 2 is

equal to one 1. It follows that the model contains three independent parameter.,: b, qb,

and a, where b is a measure of the baroclinicity of the vortex, qb is the potential vorticity

of the background flow, and a measures the vertical shear of the external flow.

As discussed in Chapter 1, the motions of interest to us are governed by the f

plane quasigeostrophic potential vorticity equation (see e.g. Pedlosky, 1979):

Otq + Jq - 0q= 0 , (3.1)

where the quasigeostrophic potential vorticity field has the special form 2

q + = qb+ q,(z)?(1+ - r), (3.2)

-. O as r -4 00,

where r is the distance from the origin. Thus, (3.2) represents an isolated three di-

mensional patch with potential vorticity qb + q(z), in an external flow with potential

vorticity qb. Because q is assumed to be small, the vortex is almost spherical, as shown

in Figure 3.1. In what follows qv (z) is chosen in the special form

q,,(z) = 1 + bz , (3.3)

which may be thought of as a truncated expansion of a field with a more complicated z

dependence. Notice that the choice (3.3) gives solutions which are cyclonic, even though

it is well known that Meddies are anticyclonic vortices. This is primarily a notational

convenience, as it is clear from (3.1) that re-scali:ng q merely alters the time scale of the

problem.

It will be convenient to decompose the streamfunction ik into three parts: =

0' + t" + 0b6, where 'P" represents the pressure field of the unperturbed spherical vortex,

V?' gives the small anomalous pressure fluctuations associated with the deformation of the

A.s disc.iused in (I'apter 1. when S = I an obilae spheroidal vortex will lie spherical ii I ransforned
spee. which mllows the problem to be conveniently expressed in splierical coordinates.

2'h iq t lie Ileavi.ide Step fnctlioi: 'h(z) = ( if z < 0, ?N(Z) = ] if 2 > It
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-+z r--l 77

, N i
ttb aZ - qbY

Sqij= + bz + qb /q~t =q6

Figure 3.1: Schematic of a three dimensional quasigeostrophic vortex in a shear flow given by
utb(y, z) = az - q~y. The boundary of the vortex departs from a unit sphere by the small amount

vl(O, 4, i). Inside the core the potential vorticity is given by q = 1 + bz + qb; outside the core

q = -
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boundary, and "O is the pressure field associated with the background flow. 0 can then

be found by solving for the three components s, /, and 0' separately. The potential

vorticity field for the basic state vortex is chosen in the form

V"O" = q.(z)H(l - r) (3.4)

10V -- 0 asr-- 00,

which represents a spherical vortex with potential vorticity q = q,(z) inside, q = 0

outside. Next, the streamfunction for the background flow bb is defined by

V 2 0b = q, = a constant . (3.5)

Since the background flow is not required to vanish far from the the vortex, 4'6 will be

a quadratic function of z,y, and z, and the associated flow will have constant shear.

Using the above equations for 00 and , it follows from (3.2) that the perturbation

streamfunction must satisfy 3:

V2V¢'  _ V2o- V2,Pv V 2o

= qb + q(z)?(1 +q - r) - q.(z)((1 - r) - q

= 7(0O, ,t)q.(z) (1, + q- r) - ?t(1 - r)

- (, .O, t)q,(z-)b(r - 1) , (7 - 0) (3.6)

0' -- 0 as r - oo.

It can be readily verified that the solution to (3.4) is

(r 2 /6 - 1/2 ) + I zr2/10 - z/6 r < 1(37
-1/3r ) b -z/15r 3  r>1 ' (

and the associated flow field is of the form

u"(9) = -rsin0 13 + -br 2 sin 20 1 , (3.8)
3r 10 1r

'Thu dlI ft.nc.ion notation in (3.6) may e under.tood if we consider 64r - 1) to le lhe limit a.%
i- or R tetlilence of tophat, function.ti of width q and height ,
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where 0 is in this case the polar angle (For the details of the calculation leading to

(3.8), the reader is referred to Appendix 1.). Thus, the monopoler potential vorticity

component is associated with a flow which is in solid body rotation within the core, and

which decays like 1/r 2 outside. The baroclinic potential vorticity component induces a

vertically sheared flow within the core, which falls off like 1/r 3 outside the core. Figure

3.2a shows a cross section of the basic state flow field for the case in wh3ch b = 0, and

Figure 3.2b shows the flow field when b = 1.0. In Figure 3.2a the rotation frequency is

the same at all depths inside the core; in Figure 3.2b the rotation frequency 'aries by a

factor of four over the depth of the core.

Notice that V2 10 vanishes everywhere except in the narrow region between r = 1

and r = 1 + 17. In the limit as 17 --. 0, then, the problem of finding 0' reduce- to solving

Laplace's equation in the regions r < 1 and r > 1 separately:

V20, = 0 r <1 (3.9)

V2,p ' = 0 r>1,

and then matching the twe solutions across r = 1, so that (3.6) is satisfied. The ap-

propriate matching conditions may be obtained by integrating the field equation (3.6)

(written here in spherical coordinates) across the interface:

j+e 1r = j- 17(0,,0, t)q.(z)b(r - 1)dr-r (2,,)+ (se,)+ sin2eb) . , -It

= 77(0, 4,t)q(z) . (3.10)

Letting c - 0 gives the first matching condition

[Or',]=I = 77(0, 0, t)q.(z) , (3.11)

so that the gradient of the streamfunction is discontinuous across the surface r = 1. This

condition guarantees that the total amount of anomalous potential vorticity remains

constant as 17 -- 0, or, equivalently, that the velocity is continuous across the interface.

A second integration gives the second matching condition

[t',= = 0, (3.12)
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a b

Figure 3.2: Contour plot showing basic state vortex flow field for b = 0.0 (a) and b = 1.0 (b).

When b = 0 the core is in solid body rotation, while when b > 0 the rotation rate increases with

z inside the core. In either case speeds in the far field decrease like sin(6)/r 2 , according to (3.8).
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which ensures continuity of the pressure field.

As discussed in Chapter 1, a kinematic boundary condition must be applied on

the vortex boundary to determine the evolution of the flow. This will ensure that the

boundary of the vortex is a material interface. In a reference frame translating with

constant speed uo, the kinematic condition is

Bt+(u-uo)B,,+vBy=O onB=O, (3.13)

where the boundary is given by 4

B3 = 1 + v7(0, 0, t) - r = 0O. (3.14)

It will be convenient to rewrite (3.13) in a spherical coordinate system. Using the

results 8, = sinOcos 0O, + .cos0cos 80 - s8" 8, and il -OB = (I x 1,P) - =

-VO/r + cot OVP.te/r 2 - (cosOfi@e/r + sin O, )i,0/rsinO, it follows that (3.13) may be

rewritten:

1t + uo(sinOcos0 - 1 cosOcos 01e + 1 sin ) + 0/r cot 60b7e/r2 +
r~ r sinO

+(cos 00e/r + sin 00,)770/r sin0 = on B = 0. (3.15)

Recalling that V, = 0" + 0' + Ob , and invoking the scaling assumptions aV"(0) =

0(1), u0 ,- -,' V ' fb < 1 5, gives the linearized kinematic condition

17t + u'(O),7,0/sin + tfi= -uo sin O cos b- b,+ 0(77) on r=, (3.16)

where

1"(0) = cos 00 + sin 0,'.

Equation (3.16) simply states that in a frame of reference translating with speed uo, the

rate of change of Y7 following the basic flow is balanced by the flow normal to the boundary,

which is due to the combined effects of the external flow and the uniform translation.

4ro is ths constrained to be a .ingle-valhed fimitiot of 0 and 0.
"Thiss t R q and 4,' don't vary too rapidly in 0 and 0.
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Notice that (3.15) is to be applied on the boundary r = 1 + " of the vortex, while (3.16)

is applied on r = 1 - the boundary of the basic state vortex. This simplification can be

justified by expanding each of the terms in (3.15) in a Taylor series in r, and neglecting

terms of 0(1 7 12). The terms representing the external flow and the translation effect

appear as a forcing on the right hand side of (3.16), and hence they fix the magnitude

of the boundary deformation' 6 . Finally, note that the value of uo has not been specified,

and it might therefore seem that we could choose any value we liked for u0 . However,

it turns out that the translation speed is related to integral properties of the potential

vorticity distribution, and it is fully determined once a and b are specified. uo will be

determined shortly as a solvability requirement for our solution expansion, and found to

depend linearly upon both the shear a and the baroclinicity b.

Normal Modes on a Spherical Vortex

In this section the behavior of a monopolar vortex (b = 0) in a fluid at rest at

infinity will be examined. The basic state potential vorticity field is thus of the form

q. = ?W(1 + 17 - r). (3.17)

As there is no imposed background flow, we may without loss of generality set

Ob = 0, (3.18)

and with b = 0, the basic state vortex streamnfunction (3.7) becomes

/= -1/23r r <> 1 (3.19)

The associated basic state flow field is of the form

T = rsin ( 1 3  r<1 (3.20)= rsin 1/r3 r>l 1

s \\'i huoit these ierins. (3.16) is honiogeneous in 17. a it may be written as a forced inlegro-diffi'rcnl ial

etiliatio for q:

1 + Ico -00; + +iu 8#:)?,/i, + ,11 Gfi'o p)qshii Ood9dOo = -uo i,, co% - /,.
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so that the core is in solid body rotation, with speeds decreasing rapidly outside the core

(see Figure 3.2a).

The equation for the perturbation streamfunction b' is given by (3.9), with the

matching conditions

[t],=i = (G, 4, t), (3.21)

[01r=1 = 0.

Because Ob = t = 0, the kinematic condition takes the simple form

t + Oo' +, i o = -u0 sin 0 cos 0 onr=1. (3.22)

The spherical geometry of the problem posed by (3.9), (3.21), and (3.22) suggests an

expansion in terms of spherical harmonics, so we look for solutions of the form

= or , )e- t (3.23)

77 =.oErn=- n (0, O)e

The problem then reduces to one of choosing the complex expansion coefficients Rmn

and cmn such that (3.21) and (3.22) are satisfied. Notice that the spherical harmonics

are defined by
m(O ,/) = 2n+ 1 (n - m)!Yn"(,@ - (n' yPn(cOs0)e" 1 (3.24)

47r (n + m!f~oOe

where the Pn are associated Legendre polynomials. The superscript m therefore deter-

mines the azimuthal (4,) behavior of a harmonic, while the polar (0) structure depends

on both m and n. For future reference, the first few spherical harmonics are listed here:

3
Y - - sin Oe O  (3.25)

y = +X/8isinOe-
35

Y2 -3 -sin cos Oc4 '

Y , = +3 2 sin cosOe-'
56ir
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Y = +3 /96wsin2 ee2i

= +3 sin2 ee--2i "

For further information concerning spherical harmonics, the reader is referred to the

excellent discussion in the book by Ariken (1966).

Putting (3.23) into (3.9) gives an equation for the Rm,,:

r2 R" + 2rR ,. - n(n + 1)Rn = 0, (3.26)

which has the solution

Rmn A+, r$+ + Ainrk- , (3.27)

k+ - (-dI 1-l-4n(n -1))/2 - (n-+

It follows that the solution to (3.9) which is continuous across r = 1 (and which is

everywhere bounded) may be written in the form

zo O n=( r Y n(O' <) -iwt  r < 1 (3.28)

The next step is to satisfy the derivative condition in (3.21). Putting the expression for

the streanfunction into (3.21) and setting r = 1 gives

n=0 ~ =-nAmn(k-. - k+)Y.(OO)e = En=o =_ , (O,)e t. (3.29)

Multiplying both sides by Y",' and integrating over the surface of the sphere gives

- A,(2n + 1) = Cmn,1 (3.30)

so there is a very simple relationship between the expansion coefficients for 0/' and those

for 77 . Putting (3.30) into (3.28) gives:

='O 2n +1 rk (n -(0,r 1E"=n =n c, ((3.31)
"n=O n 2 + 1 -r

Putting the expressions for 4" and 77 into the kinematic condition (3.22) gives

M 1 ,. , t T[[ 0
2n + + 3m)icmne +J Jsphere u sin0 cos 40Y d 0 (3.32)
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Evaluating the integral in (3.32) (see Appendix 3 for the details) gives

/ Lphem u sint? cos OY,"*dor = u°V22r-(6,.- - + (3.33)

where 6 .,.,. is the Kronecker delta function, defined by 6 ,, = 1 when m = n, 6,,,n = 0 if

m i n. Notice that this integral does not depend on time, and it is only nonzero when

m = ±1, n = 1. When the integral is nonzero, it appears that there must be a steady

component to the response to counterbalance it. However, putting w = 0, m = n = 1

shows that (3.32) can only be satisfied if uo = 0. It follows that all modes must obey the

dispersion relation
'i 1 1

-- = (3.34)
m 3 2n+1 (

where m and n are integers

m = 0,±1,±2,±3,. .•,n

n 0, 1, 2, 3, ....

Notice that w is always real, so that there are no exponentially growing modes, i.e.,

the basic state vortex is linearly stable. The normal mode dispersion relation is plotted

in Figure 3.3. The first term on the right hand side of (3.34) represents the advection

by the basic state vortex flow field, while the second term represents the propagation

tendency of the modes with respect to the basic flow. The normal modes try to propagate

against the basic state flow, with the lowest (n = 1) mode stationary, and with higher

modes being increasingly carried along by the mean flow. Finally, all m = 0 modes are

symmetric about the z axis, and (3.34) shows that they must therefore be stationary. It

follows that any vortex with a boundary which is axisymmetric about the vertical axis

will be an exact steady solution, as it may be synthesized from the m = 0 modes. The

shapes of the first few normal mode boundary perturbations are sketched in Figure 3.4.

The (1,2) mode is associated with boundary perturbations of the form 77 = c12Y 21 +

C_12]' -l - sin 26 sin 4o, and may be thought of as the continuous analog of the point
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Figure 3.3: Normal mode dispersion relation: IL = 1 - 1. The normal modes propagate
3 2"+1

against the basic state flow. The n = 1 mode is stationary, since its propagation speed exactly
counterbalances the advection by the basic flow. Higher modes propagate more slowly, and are
thus increasingly carried along by the basic state flow.
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(2,2) niode
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Side View Top View

Figure 3.4: The shapes of the first few spherical harmonic boundary perturbations t7 cm ,' Y +

c_,,, . The orientation of the boundary perturbations in the (z, y) plane is determined by

the phase of the complex expansion coefficients. Here we have arbitrarily chosen these such that

the deformed vortex is aligned with the z axis. Superimposing the (1, 1) mode on a unit sphere

simply shifts the basic state vortex horizontally, giving a shifted sphere. Superimposing the (1,2)

mode gives a 'tilted' sphere, while the (2, 2) mode produces an ellipsoidal perturbation. As drawn
here, 77 - sin 0cos, ti4 .. sin2Ocos , and 2 sin2 0 cos 20.
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vortex solution discussed in Chapter 2. The point vortex analog consists of a pair of

point vortices of equal strength at different depths, which are initially 'tilted' from the

vertical. The tilted vortex pair rotates steadily about a vertical axis, just as the boundary

perturbation does in the continuous model. The higher mode disturbances do not have

direct analogs in the point vortex model for the simple reason that there aren't enough

point vortices to adequately represent their structure.

A Monopolar Vortex in External Shear: Steady States

The results of the last section will now be generalized to include the effects of a

background flow with constant horizontal and vertical shear. The streamfunction of the

background flow is chosen to be of the form

1 2
OPb = -ayz + qby (3.35)

which represents a zonal flow with constant shear given by

Ub = az - qWl • (3.36)

Notice that the average flow speed over the core region (r < 1) is precisely zero, so there

cannot be a bulk advection of the vortex by the background flow.

The form of the basic state streanfunction 0", and the equation for t' are the

same as in the last section, so that part of the calculation will be skipped. The difference

shows up in the kinematic condition, which takes the form

'it + 07o+ 00+ b,+uosinOcosqS= 0 onr = 1. (3.37)

As before, the solutions are assumed to be of the form

= E.=o =_.R.,,(")1,,(O, E,)etw

17 = . =oX , nCmnY .n (0, O)e ,

and after making use of the orthogonality properties of the spherical harmonics, there

follows

-iWC. + imAm + imcmn)e-i t + (uosin cost0+ Ob,O)Y*da = 0. (3.38)
i J.Phere
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Making use of the derivative jump condition (3.21) from the last section, this may be

rewritten in the form

m 1 t +
(-W 2n +1 + jM+ i Lphcre- sin e cos 4 + O6,#)1"do, = 0. (3.39)

There are two cases which need to be examined. First consider the case in which

m and n are chosen such that the integral in (3.39) vanishes. This implies that the

background flow does not project onto the spherical harmonic Y". For the background

flow considered here this happens when n > 2. In this case the expression in parentheses

on the left side of (3.39) must also vanish. Comparing this with (3.34) shows that these

modes satisfy the dispersion relation for free modes on a sphere found in the last section,

and thus are unaffected by the external flow. Because these modes are unforced, their

amplitudes are completely arbitrary. It is clear that a solution may contain an arbitrary

number of such modes, and the combination of these modes constitutes the homogeneous

solution to the problem. If the integral does not vanish, then the response must also

contain a steady component to balance this term, since the integral is independent of

time. The forced response is described by (3.39), with w set equal to zero

(3 2n +1 )imcmn + f Jphere(Uo sin 0 cos 0 + Ob,O)Y,*dG = 0, (3.40)

so the coefficients for the forced component of the response are uniquely determined

by the background flow. Recalling the definition of tbh, the integral in (3.40) may be

evaluated (see Appendix 3) to get:

J fhere(U° sin0 cos0 + Ob,,)Yn d = uo Vi/(6m,.,- - 6 ,,+1) 6n,1 +

11+ O 3 a\6i/(b., - 6,n,-1)6n,2 + T bV97/(.- - ,n,+2)bn,2,1 (3.41)

where the primes have been dropped. Thus, only the m = ±1, ±2, n = 1, 2 harmonics

will 'feel' the background flow. Notice that when n = 1 the first term on the left side of

(3.40) vanishes, while (3.41) shows that the integral contributes a term proportional to

u0. Clearly, the only way that the equality can be satisfied is if u0 vanishes, implying

that the vortex does not translate.
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Now the form of the boundary deformations induced by the external flow will be

examined. As we are concerned here with the equilibrium response of the vortex, only

modes which are directly forced by the external shear will be discussed. Specifically,

the free modes discussed in the last paragraph will not be considered. Using (3.40) and

(3.41), it is easy to solve for the coefficients Cl,2, c*2,2 in terms of the background flow

parameters:

C12= C-2= +!ia6/5 (3.42)

C2 C-..22 = !6F9i/

The form of the boundary perturbation is given by

77F = C12Y2 + c- 12Y - 1 + c22Y2 + c-22 "2 . (3.43)

After a bit of manipulation we find that the deformation induced by the external flow is

of the form
15 15

i7F = + asin29sin4'+ 1-qb sin2 0cos 24, (3.44)
4 8

where the vortex boundary is of course given by r = 1 + viF. The term proportional to

o causes the core to 'tilt' at right angles to the external flow. The direction of the tilt

is determined by the sign of a. The term proportional to q represents an ellipsoidal

perturbation which is associated with the external horizontal shear. The major axis for

this deformation may be either parallel or perpendicular to the external flow, depending

on the sign of qb. The shape of these boundary deformations is sketched in Figure 3.5.

The shapes of the steady solutions shown in Figure 3.5 can be understood by

considering the pressure field due to the background flow on the surface r = 1. In a

study of two layer vortices in shear, Yano and Flieri (in press) found that the steady

boundary shapes were determined by two competing effects: (1) the adjustment of the

boundary in response to the externally imposed pressure field, and (2) the adjustment of

the perturbation flow in response to the deformation of the boundary. They found that

the nature of the boundary deformation depended upon wbich nf thbes two eff,'cts was
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b __ +x +Y

Figure 3.5: Sketch of the possible steady state boundary perturbations for a monopolar vortex
(b = 0) in an external flow with constant shear. 5a shows the case in which the external flow
is vertically sheared, and the vortex is 'tilted' in a direction perpendicular to the background
flow. The direction of tilt is determined by the sign of the external vertical shear. 5b shows
the horisontally sheared case (viewed from above). In this case the boundary deformation is
ellipsoidal, and the orientation of the ellipsoid with respect to the z, y axes is determined by the
sign of the external shear.
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larger. For vortices which were small compared to the deformation radius the first effect

dominated, while for large vortices the second effect was most important. In the present

work the model vortex is 'small' (R = ND/fo), and the first effect determines the shape

of the boundary in the steady limit. Thus, the boundary shape can be predicted by

considering the pressure field associated with the background flow. In the steady limit,

the pressure at any depth is constant on the vortex boundary. Therefore, if the external

flow induces a negative pressure anomaly at some point on the surface (r = 1), then the

steady boundary shape is obtained (qualitatively) by moving the boundary of the vortex

in the direction of lower external pressures. In the context of Figure 3.5a this implies

that a cyclonic eddy in vertical shear will tend to 'tilt' toward lower external pressures.

The relationship between the pressure field u/, and the boundary deformation can be

shown more clearly if riF is written in the form:
1 1

7F.4 = -4,01( 1 - 1 )' (3.45)

where we have used (3.19), (3.37), and (3.30), together with fact that the motion is

steady and the vortex does not translate (uo = 0). Integrating once in 0 shows that for

a given n, r7F is proportional (to within an arbitrary function of theta) to the negative

of the external pressure field b,.

Alternatively, the steady boundary shapes can be understood by considering sep-

arately the precession tendency of the vortex, and the tendency of the external flow to

deform the boundary. With no external flow, each of the vortices in Figure 3.5 wiln

precess in a cyclonic sense 7. In Figure 3.6a the arrows show the precession tendency

for the four solutions in Figure 3.5. For the vertical shear solutions the solid line shows

a horizontal cross section of the vortex core near the top; the dashed line shows a hori-

zontal section near the bottom. Figure 3.6b illustrates the tendency of the external flow

to deform the boundary for each of the vortices shown in Figure 3.5. In this case the

arrows represent the normal component of the external flow field at a given point on the

7Altholtgl the wave propagates in an anticyclonic sense relative to the fluid. the strong cyclonic flow
in lie core overwhelins this effect. leading to a cyclonic precession.
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+y +Y

+X +X

a

Figure 3.6: Plot showing how the steady solutions in Figure 3.5 can be understood in terms of a
balance between the natural tendency of the vortices to precess cyclonically, and the advection
of the vortex boundary by the external flow. In Figure 3.6a the arrows show the precession

tendencies for the four solutions shown in Figure 3.5; in 3.6b the arrows show the sense of the
normal component of the external flow field for these solutions. A comparison of 3.6a and 3.6b
shows how the two effects can cancel in the steady limit.
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boundary. A comparison of Figure 3.6a with 3.6b shows that the tendency of the core

to precess cyclonically tends to offset the effect of the advection of the boundary by the

external flow. In the steady limit these effects exactly counterbalance one another.

A Barocinic Vortex in Shear: Translation

In this section the behavior of a baroclinic vortex in a uniformly sheared back-

ground flow is examined. The baroclinic core introduces the possibility of propagation

with respect to the external fluid, as was found for the baroclinic point vortex pairs

in Chapter 2. Because this propagation is perhaps the most fundamental result of this

section, attention will be focused on the mechanisms responsible for it. In the present

model, propagation is a consequence of the interaction between the external vertical

shear and the depth dependent potential vorticity in the core. Thus, the majority of

the discussion will be directed toward the influence of vertical (rather than horizontal)

shear. The potential vorticity of the model vortex is given by q,,(z) -"1 + bz, and it is

easy to show that the associated streamfunction is of the form:

-1/3r + b _z/15r3  r > 1

It is shown in Appendix 1 that the flow in the core associated with this streamfunction

is given by
1 1

-' = (- + lbz)rsinO . (3.47)
353

This shows that the circulation in the core may be of the same sign everywhere even

if the potential vorticity changes sign (I b J> 1). The circulation does not change sign

unless I b J> 5/3.

In solving for the perturbation quantities, it is again assumed that separable

solutions exist of the form

-= E = -,,R,,(r, t)1- (0,) (3.48)
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Notice that the expansion coefficients c,, and R, are explicit functions of time. Putting

(3.48) into (3.9) gives an equation for the Rmn:

r" + 2rR' - n(n + 1)O n = 0, (3.49)

so that the Rn are given (as in (3.27)) by

Rmn = A+,rk + A;,,,rk -  (3.50)

1 1
1 s-(n+rk+ - 2 2)

The solution which is continuous across the boundary may be written

= 0 E nArn (rk+(n) r < 1
- - rk-(n) ) ) r > 1 '

where the Amn must be determined such that the velocity field is continuous across the

boundary. This is done by putting the expression for 0' into (3.11) and setting r = 1,

which gives the additional constraint:

__- k+)Y(,n) = q',(z) 0. .0cmY,(0,#). (3.52)

Multiplying both sides by Y,, '* and integrating over the surface of the sphere gives

- Am.,n(k+(n') - k_(n')) = EnO E'O=_nCmJ. n (1 + bcosO)Y'Y,T"do, (3.53)

which leads to
-A.,,,(2n'+ 1) = C,.,, + b{CmI,,(,i,+l) I (n'_-_m'_+ 1)(n' + m' + 1)

Amini(2f'+ (2n' + 1)(2n' + 3) +

+ mn-)(n, - m')(' + mI) ~ (3.54)+ (2n' - 1)(2n' + 1)

where the integration of the right hand side was performed using the result found in

Arfken (p. 456). Thus, (3.51) satisfies the equation for 0' (3.6) as long as the Am,, and

the Cmn are related by (3.54).

To solve for 0' or 17, an additional relation is needed between the c,,, and the

A,,,. This is provided by the kinematic condition, i.e., by the requirement that the
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vortex boundary be a material surface. The linearized kinematic condition for unsteady

motions in a reference frame translating with constant speed u0 is

uo sin 0 cos 0 + O + Ob, + t + (cos 000" + sin9Op)i/sing = 0(172). (3.55)

Substituting the expansions for q and 0' into the kinematic condition, and utilizing the

orthogonality properties of the spherical harmonics, it follows that

im'Am,., + d-",+ zm m.n.. + 1 imcn, I cos OY"Y,7'*do + F ... = 0,5 J Juhere

(3.56)

where the inhomogeneous term Fs,. is given by

F,...... = J f (uo singcos 4 + Pb,O)Y,7s*da. (3.57)
J Jspere

After some further manipulation, (3.56) becomes

dc ,, 1 .

im'A. ,. + '-'-'- + -zm Cmi,, +
dt 3

+ ,b I /(n' -mf C,1) 3m' + 1)(n' +r' +1)
V('- m')(n' + (n')

+ Cm,(n_I) ; - } + Fmn, = 0, (3.58)
V(2n' - 1)(2n' + 1)

again using the result from Arfken (p.456). Eliminating the A,n, between (3.54) and

(3.58) (and dropping the primes) gives a recursion relation for the cnn coefficients:

cdn + 1M - 1dt n +1)+

imb( 1 1 {fCm(n+l) (-n+ 1)(+n + 1 / (n - m)(n + m)
1 2n++ (2n-+ 1)(2n++ 3) +C V() (2n- 1)(2n+ 1)

coupling term

+ F,. = 0. (3.59)

Choosing the same uniformly sheared background flow used in the last section

b -- -ayz + qbY2 , (3.60)
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it follows that the inhomogeneous term F,, is given once again by the Integral (3.41):

Fm, = tOVIir(6m,. - 6m,+1)6nu + 0 -. ,_)6n,2

+ L- 6,+2)6n,2. (3.61)

Equation (3.59) is a differentio-difference equation for the c, ,, coefficients. It

is interesting to note that allowing the core potential vorticity to be depth dependent

has coupled the spherical harmonics in the wavenumber domain, which complicates the

situation considerably 8. This implies that the spherical harmonics are no longer the

optimal set of basis functions. If the recursion relation is truncated at some n = N, then

the problem can be simplified by writing (3.59) in matrix form:

dm

where c,, and Fm are column vectors, and M, is an N x N, real, tridiagonal matrix.

The solution to (3.62) is then

CM(t) = iM- 1 Fm + aiVleiIAt + a 2V 2ei2t +... + aNVNei-%Nt, (3.63)

where the a, are arbitrary constants, the Vn are the eigenvectors of Mm, and the An

are its eigenvalues. To solve an initial value problem, the ,, must be chosen to satisfy

the given initial conditions. Using a low order (4 x 4) truncation of the matrix equation

(3.62) the A,, were obtained analytically, and found to be real, implying that (3.62) has

no exponentially growing modes. This result has been verified numerically for various

values of b using 20 x 20 truncations of the matrix Mm. It is found that the first four

eigenvalues are well described by the 4 x 4 truncation. The fact that the eigenvalues are

all real is significant, since it shows that the basic state vortex is linearly stable. Given

that b can become large enough that the circulation in the core can change sign, it is

reasonable to expect that the solutions could become baroclinically unstable. Several

authors have found solutions representing unstable baroclinic vortices. Using a 'heton'

i ese p.enl the inliereg lieg possibility tlhat q and O' may vary rapidly in 0 even whei the hackgrotind
flow field varies qyite slowly.
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model, Hogg and Stommel (1985) found that a baroclinic vortex becomes unstable if its

radius is larger than 1.27 deformation radii. Pedlosky (1985) obtained a similar result

using a two layer model of a baroclinic vortex. Flierl (1990) and Helfrich and Send (1988)

found that columnar baroclinic vortices can be unstable if they are large enough and do

not have too much barotropic circulation. It is likely that the stability of the basic state

flow is due to the fact that the horizontal dimension is fixed at R = ND/fo. Instabilities

might become possible if the horizontal scale of the lens were allowed to be larger than

this.

Instead of solving the matrix problem (3.62) directly, it is useful to try to deduce

certain aspects of the solution behavior directly from (3.59). As mentioned earlier,

primary attention will be given to the m = 1 harmonics, which are excited by the

external vertical shear. Equation (3.59) has the interesting property that the equations

for the c,,, and Cm,2 coefficients are decoupled from those for the rest of the cm,,. This

makes it possible to compute both c12 and the speed uO in terms of the parameters of

the problem, without solving (3.59) in its entirety. To do this, we will use (3.59) and

(3.61) to obtain equations for cl, and c12. Putting m = n = 1 gives

dcliu v2r 2b
- / C12 b (3.64)

and setting m = 1, n = 2 gives

dc12  2i 1
+ TC12 a V61r/5. (3.65)

Notice that the external shear qb does not appear in (3.64) or (3.65), implying that the

m = 1 harmonics don't 'feel' the external horizontal shear 9. Equation (3.65) may be

easily solved to get

C12 = + i/6r/5(1 - e - 2 t/ s ) + C12(O)e - 2i t l 1. (3.66)
2 V

This is equal to the steady result found in (3.42) for a nionopolar vortex, plus a periodic

component of arbitrary amplitude. The periodic component constitutes the homogeneous

*Ii ise f.ily seen from ( 3.61 ) wha q appears oily in i the eqItatios for it, m s 2 iheritaI harionics.
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solution to (3.65), which obeys the dispersion relation (3.34) for free modes on a sphere.

Next, notice that the value of c12 is independent of the parameter b. However, it turns

out that the value of b has an important influence on the asymptotic behavior of the

c,,n, and hence determines the convergence properties of the solution expansion (3.23).

It will be seen shortly that the solution expansion does not converge if the vortex is too

baroclinic (I b 5_ 5/3).

Translation

Substituting (3.66) into the equation for c11 gives

dc /15+ r + -2it 2ib ( +. (3.67)de - {_abv/ 1 5 uoV r/} + /(1 c ° +a b-). (.7

dt 15 5- 12 15

In order to avoid secular growth of cxl, the expression in curly braces must vanish,

implying that the vortex moves with speed 10

uo= ab. (3.68)

Therefore, the translation speed uo is directly proportional to the vertical shear a, and to

the baroclinicity b. Notice that although there are 0(1) variations in potential vorticity

within the core, the translation speed is very small (u0 = 0(a) < 1). This is because the

basic state potential vorticity varies only in z, and the smallness of the tilt induced by

the external flow therefore causes the self propagation effect to appear at higher order.

For a steady flow, recall that the shear a is linearly related to the amplitude of the

(1, 2) coefficient. Thus, the translation speed can be expressed as a function of b and the

amplitude of this harmonic 11:

uo = 25 i lr I c  (3.69)

This shows that the translation speed is directly related to the amplitude of the boundary

perturbation. It should be emphasized that, even if the motion of the boundary is a

''Ihis cioice of uo corre.pond- to choosing I ie appr(o)lriate frvite of ref.retice for I liI prollem. which
i5 of coii r the ione which traiislales with the vortex.

"If the flow is unsteady. then the time average of I C12 I should hIe used in (3.69).
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complicated function of time, the vortex moves at the constant rate given by (3.68).

The propagation is due to the self propagation tendency of the dipole component of

the potential vorticity field, while the shear balances the precession tendency of the

barotropic component of the potential vorticity field.

There is a strong parallel between this translating vortex solution and the point

vortex solutions presented earlier. In Chapter 2, solutions were obtained representing

translating point vortex pairs when two point vortices with potential vorticities 1 + A

and 1 - A were placed in a background flow with constant shear. The vortex pair was

found to translate with speed

Uo = -(ub(i) - ub( 6)) + 1 (UbVI) + ub(92)) (3.70)
22

The second term on the right side of (3.70) is simply the average of the background flow

advecting the two vortices. There is no analogous term in (3.68) because the average

background flow speed over the core is exactly zero by construction. In the case in which

the vortices are in a pure vertical shear, and the coordinate system is chosen such that

the average background flow vanishes, (3.70) takes the particularly simple form

u0 = ZaA , (3.71)

where Z is the constant vertical separation between the vortices. The qualitative similar-

ity between (3.68) and (3.71) is striking - in both cases the speed is proportional to the

external vertical shear, and to a parameter measuring the baroclinicity of the pair. The

major difference between the two is that in (3.71) the speed is a function of the vertical

separation Z between the point vortices, while (3.70) contains no analogous term. This

is due to the fact that the parameter S has been assigned a value of one, so that the half

height D of the lens has the fixed value D = foR/N.

In both the point vortex and the continuous vortex models background shear

and potential vorticity variation within the core are essential to the propagation effect.

The external shear serves to keep the eddy tilted (in a time average sense) in some
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fixed direction, so that the baroclinic component of the potential vorticity field can self-

propagate. Put somewhat differently, the external shear counterbalances the tendency

of the barotropic component of the potential vorticity field to precess, which enables

the baroclinic component of the potential vorticity field to self-propagate. Increasing the

external shear causes a larger deformation of the eddy, allowing the baroclinic component

of the potential vorticity field to interact with itself more strongly, which in turn leads

to a greater propagation speed.

It is important to try to relate the translation speed uo to some integral property

of the potential vorticity field. This will demonstrate that the propagation found here

is not specific to the particular problem we have studied, but instead is a rather general

phenomenon which can be expected in a large class of problems of this sort. It will be

convenient to consider the potential vorticity equation in integral form:

dd- q ( z ) z d /  q ( z )d  = j q(z)udr /  q(z)dr '  (3.72)

which may be obtained using the properties of material integrals (see, e.g., Batchelor,

pp. 131-134). Now, fcoreq(z)zdr/ fLoreq(z)dr is just the z coordinate of the center of

potential vorticity of the lens, which we shall denote by < z >. Thus, (3.72) can be

rewritten in the form

d <q(z)udr/ q(z)dr =< u > , (3.73)dt lore I.

This simply states that the center of potential vorticity of the lens moves at a rate given

by the potential vorticity weighted average of the flow speed over the core. In the present

case, this integral can be evaluated, and it will be shown in Appendix 2 that it is equal to

lab - exactly the speed found earlier by other means. In addition, it is shown by direct

calculation that the speed u0 of the vortex is equal to the ezternal flow speed at the center

of potential vorticity of the lens. In Chapter 4 (see pages 104-106) it will be demonstrated

that both of these results are readily generalized to large amplitude, nonlinear solutions.

This issue is also addressed in Appendix 2, using a somewhat different approach. In
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these two sections it will be shown that in the absence of external flow, the center of

potential vorticity cannot move, and that therefore the only component of the flow field

that contributes to the integral in (3.73) is the background flow ub. From this result

it follows fairly readily that the propagation speeds of the nonlinear solutions have the

same dependence on a and b as was found for the linear solutions, and thus are precisely

given by the relation (3.68).

It should be emphasized that the result uo = ab/5 does not depend upon whether

the solution is steady, or even upon whether steady solutions exist. It is similar to the

result discussed in Chapter 2, where it was shown that the center of potential vorticity

of a vortex pair translates steadily even when the motion of the vortices is unsteady.

Notice that this is generally not the case for the center of mass (i.e., the geometric

center) of the vortex pair: if the motion of the individual vortices is unsteady, the

velocity of their center of mass is also unsteady 12. Only in the steady limit will the

velocity of the center of mass coincide with that of the center of potential vorticity. This

can be seen quite simply by considering the motion of two point vortices of different

strengths in a quiescent fluid. In this case the vortex trajectories are concentric circles.

From the results of Chapter 2 it is clear that the potential vorticity weighted average

velocity (Q1u1 + Q2u2 ,QlVl + Q2v2)/(Q1 + Q2) vanishes, while the average velocity

(ul + U 2 , I' + V2 )/2 is a periodic function of time. These considerations imply that picking

u0 to satisfy the solvability condition (3.68) is equivalent to choosing a coordinate system

which translates with the center of potential vorticity of the lens:

u = dt >(3.74)
U= dt

Steady Behavior

In principle it is a straightforward matter to integrate (3.59) directly using stan-

dard numerical techniques. This will not be done here, as many interesting results can

be obtained from (3.59) by examining the possible steady solutions. The steady be-

"This is wixy a q-weighltd average is used in ite definition of u0.
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havior of the vortex also has application to the unsteady behavior, since (3.63) shows

that the unsteady solutions are made up of a steady part which is in equilibrium with

the forcing, plus an unsteady component. A major result of this section is that there

is a maximum baroclinicity b beyond which no solutions exist unless the external shear

vanishes identically.

Setting J = 0 gives a three term recursion relation:

1 1
imc. n( 3 2n + 1 ) +

1 /(n- -m + 1)(n-m-1) +(n- m)(n +m)
+ imb(V 2+ 1){cm'n+i [f(2+ 1)(2n + 3) (2-n-1)(2n+1)

+ Fmn= o. (3.75)

Notice that any m = 0 (z axisymmetric) mode satisfies (3.75) exactly. This demonstrates

that the solutions are nonunique, as adding any axisymmetric mode to a given solution

produces another solution different from the first. In what follows, attention will be

focused on those modes which are directly forced by the external vertical shear - the

m = ±1 modes in this case, which filters the m = 0 modes out. Evaluating (3.75) for

m=n= 1and m=1, n=2gives

5
C1 2 = +2ia,67r/5 (3.76)

from which it follows that the translation speed is again given by (3.68). In principle,

it seems as if all of the coefficients could be generated by simply substituting different

values of m and n into (3.75). It turns out that this is not the case, since only one term

in the sequence (c1 2, for the m = 1 sequence) can be specified.

To compute the remainder of the c,,, we therefore write (3.75) as a matrix equa-

tion, which, when truncated, can be solved for the c,,,. Fortunately, when b is not too

large the coupling terms in (3.75) are small, so that the c,, decay rapidly, and satisfac-

tory results can be obtained using a low order truncation. In matrix form, (3.75) takes
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the form

iMmcm + F, = 0, (3.77)

which is the steady form of (3.62). The coefficient vector cm is obtained by inverting the

matrix M,,, which gives

c, = iM 'F,, . (3.78)

Figure 3.7a shows the steady boundary shape obtained for the case in wl, b = 1,

a = 0.1, and q, = 0. The plot shows a vertical cross section through the vortex taken

along the +y axis. Figure 3.7b shows the steady boundary shape when a = 0.1, q = 0,

and b = 4. Notice the discontinuity in q/, indicating that the solution expansion is locally

nonconvergent.

To find the cause of this nonconvergence, consider the large n limit of the recursion

relation (3.75). It is easy to show that in this case (3.75) is approximated by

Cm,n+1 + flcmn + Cm,-I - 0, (3.79)

where

_ 10

This is a second order homogeneous difference equation with constant coefficients, which

may be solved by looking for solutions of the form Cmn _ y", where -y is a complex

number to be determined. Substituting into (3.79), it follows that there are solutions of

the assumed form provided that y satisfies

7 2 + f1Y + 1 = 0, (3.80)

so that

y = (- f±V h- 4). (3.81)

When I f?1 > 2 there are two real roots, one of which is greater than one, and another

which is less than one, as shown in Figure 3.8. Thus, there is one sequence in which the

c,,, grow with n, and another in which they decay with n. The increasing sequence gives
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Figure 3.7: Plot of the steady boundary shape when o = 0.10, b 1.0 (7a), and when o = 0.10,

6 = 4.0 (Tb). In the first case the series converges rapidly, and only a few terms in the expansion

(3.23b) are needed. Ten terms have been kept here. In the second case the series converges

slowly, and 200 terms have been kept. Notice the singularity in i when b is large, indicating that

the solution expansion is invalid. The solution breaks down when the basic flow within the core

vanishes at some depth, which happens when I b 1> 5/3.
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Figure 3.8: Plot of ~'as a function of i0= Notice that (1 is small for baroclinic vortices and
-

3b

11 - ±cxo in the inonopolar limit. (8a) shows the real and imaginary parts separately, while (Sb)

shows the magnitude of yr. The asymptotic behavior of the c, as n - oo is given by c,, -"

so that solutions for which -t > 1 are divergent solutions. The solution also breaks down when

-v 1, which occurs when -2 < 11 < 2 (as discussed in the text).
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solutions which are unbounded, and it is therefore eliminated in favor of the sequence

which decays as n --+ oo.

When Ifl 1!_ 2, -f is complex and has magnitude one, implying that as n --* oo

the magnitude of the C,n approaches some constant value. In this case the ratio test is

insufficient to determine the convergence properties of the solution expansion. We take

the approach of plotting the solutions to see the form they take. Using (3.8) it can be

shown that I l I< 2 implies that the vortex is sufficiently baroclinic that u"(0) vanishes

at some depth inside the core. It turns out that the expansion converges everywhere

ezcept where the basic state flow uv(0) vanishes. This nonconvergence is manifested by

a discontinuity in 7, as shown in Figure 3.7b. Thus, when I Q < 2 (or, equivalently,

I b 12! 5/3), the only convergent solution is the trivial one in which the vortex is spherical

and the external shear vanishes identically.

The singular behavior of the boundary is similar to that noted by Flierl (1988)

in a study of columnar geostrophic vortices, where it was found that steady boundary

deformations became infinite if there was counter-rotating flow in the vortex core. In

the present case, it is apparent that when the basic flow uv(O) vanishes at some depth

within the core, no steady solutions (in nonvanishing shear) exist which are consistent

wvith the model assumptions. This behavior is evidently due to the presence of a steering

level at the depth where the basic flow changes sign. Recall that a steering level is a level

at which the phase speed c, of a stable wave is equal to the mean flow speed U(z) (see,

e.g., Pedlosky, 1987). To apply these ideas in the present case, consider the motion of

a particle on the vortex boundary. For simplicity, assume that tbe boundary is almost

spherical (r - 1), as in Chapter 3. Now, if there is a wave on the vortex boundary, then

the motion of the particle is approximately given by the linearized evolution equations

-O- ))(3.82)
dt

d78- =  (le

81



where 0 and 4 represent the polar and azimuthal coordinates of the particle in a spherical

coordinate system. u',)(O) represents the basic state azimuthal flow

u = + bcos)sin , (3.83)

and u(,)(O, 0) represents the horizontal flow across r = 1 associated with the boundary

wave. The equations (3.82a,b) show that the 0 coordinate of the water particle changes

as a result of advection by the basic state azimuthal flow, while the q coordinate of the

parcel changes in response to the weak flow normal to the boundary of the lens (Since

the flow is horizontal to lowest order, the 0 coordinate of each parcel remains fixed.).

Solving (3.82a) shows that 0 is a linear function of t, and therefore (3.82b) becomes

dj7 = u(,)(O, 0o + u, )(O)t). (3.84)

In any stable, steadily translating configuration, u(,) must be a periodic function of time,

and it follows from (3.84) that 7 will be also. To show this, recall from Chapter 3 that

the velocity normal to the boundary can be written as a sum of spherical harmonics.

For steady solutions, this summation can be written

t(r) = : . ..P,, (0)e , (3.85)

where it is assumed that the Km, are known. Now, in a stationary frame of reference

(3.84) can be rewritten

77+ L7 = o - u((, 00 + (o t), (3.86)

-± sin 000(

and it follows that when the rotation frequency is nonzero everywhere within the core,

steady solutions to (3.84) can be found of the form

-- sn = , K PO)e'C9 (us0)(O) $ 0 V 0). (3.87)

This expression can be integrated term by term to show that 17 is periodic in 4' (and

hence also in t, since 0(t) is a linear function of t). At the steering level, however, such a
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steady balance is impossible, since u')(0) vanishes. In this case 17 evolves according to

(0)
077= (3.88)

where 0o is a constant. The right hand side of (3.88) is a function of 0 alone, so that

v7 grows linearly with time in the vicinity of the steering level. It follows that no small

amplitude steady solutions are possible in the presence of a steering level.

Summary

A simple model of a lens-shaped quasigeostrophic vortex in external shear has

been investigated. Approximate analytical solutions were obtained for the weak shear

limit. Steadily precessing solutions were found representing a monopolar vortex in a

quiescent fluid. Steady and unsteady solutions were found representing a vortex in

the presence of external shear. Finally, translating solutions were found representing a

baroclinic vortex in a shear flow. Both external shear and barocinicity are essential to the

translation effect. It is demonstrated that the translation may be simply understood as

a self propagation effect, which is due to the self interaction of the baroclinic component

of the potential vorticity field. The propagation speed represents the speed of the center

of potential vorticity of the lens, which was shown to be equal to the external flow speed

at the center of potential vorticity of the lens. The behavior of the solutions can often

be qualitatively described by a model consisting of a pair of point potential vortices

in an external flow. No solutions were found for which the basic state flow within the

vortex core changed sign with depth, unless the external shear vanished identically. In

the next chapter a series of numerical integrations will be discussed, which extend the

present results to include aspects of the behavior of nonlinear solutions. The results

of this chapter will help in understanding the numerical results in the next chapter.

It is felt that the model discussed here provides a qualitatively correct description of

certain aspects of the behavior of a Mediterranean Salt Lens in an oceanic shear flow.

In Chapter 5 this idea will be examined in some detail, when the Meddy float data are

examined and compared with the model predictions.
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Chapter 4
Numerical Calculations

Introduction

In this chapter, the steady configurations which are possible for an anticyclonic

vortex of fixed volume in an external flow with uniform shear will be examined. In

Chapter 3 this problem was considered for the case in which the external shear was very

small, so that analytical techniques could be used to solve the problem. These linear

solutions will now be extended into the nonlinear regime, and the stability of the solutions

examined numerically. The analysis will allow a determination of the area of the (a, b)

I plane in which steady solutions can be found. In addition, the behavior of highly

barocnic vortices characterized by Ib 1> 5/3 can be examined using this numerical

approach. As in the last section of Chapter 3, the investigation will concentrate on

the influence of external vertical shear and variable core baroclinicity. It is found that

when the shear is not too large the steady solutions are stable, as perturbing them leads

only to a periodic modulation of the original steady solution. Thus, in this regime the

behavior of the solutions is accurately given by the linearized solutions in Chapter 3. If

the external shear is large, parts of the core can be torn off by the external flow. The

idea that fluid can be torn from the core is consistent with the observations of Armi et

al. (1988), who reported numerous blobs of anomalously salty water outside the core of

Meddy Sharon.

Only steadily translating solutions will be examined, since an exhaustive treat-

ment of all possible behaviors is beyond the scope of this work. However, it was shown

in Chapter 3 that any unsteady solution is made up of a steady component in equilib-

rium with the external forcing (i.e., the steady background shear) plus a time dependent

component. Therefore, the solutions represent the time-mean behavior of a family of un-

steady solutions. The analysis is therefore more general than it might appear, since the

Ilic;III Ihnf lit, . reIIII of ile external vertical s lear is givet 1,.x a. while b u -asuire !h," lnroclihlicilyN

or I lic flo% inI lie core.
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steady solutions can presumably be obtained from the unsteady ones through a suitable

averaging procedure. For example, the analysis in the next Chapter shows how average

'tilt' of the core of a Meddy can be inferred by averaging the trajectories ol floats at

different depths within the core.

The method by which the steady solutions are found is a modified contour dynam-

ics technique like that used by Polvani (1988) and Meacham (personal communication).

The contour dynamics technique is fairly standard now, and has been used for studies of

2D flow by a number of authors (e.g., Zabusky et al., 1979). It is a Lagrangian numeri-

cal scheme, which follows particles on vorticity fronts as they are advected by the flow.

Pratt and Stern (1985) have applied the technique to 1 layer quasigeostrophic flow.

The application of the technique to stratified quasigeostrophic flow was first suggested

by Kozlov (1985), and the idea has since been used by Meacham (personal communi-

cation). Briefly, the idea is that if the quasigeostrophic potential vorticity field in a

stratified fluid is horizontally piecewise constant, then the velocity at any point in the

fluid can be expressed as a surface integral over the potential vorticity interfaces in the

problem. Thus, the position of the interfaces uniquely characterizes the entire flow field.

A numerical algorithm was developed which calculates the velocity at each point on the

vortex boundary by discretizing the boundary and performing a numerical surface inte-

gration at each time-step. In a forward integration, the velocity data are used to advect

the boundary; when searching for steady solutions, the velocity data are used to iterate

towards a steady configuration in a way that will be described shortly.

Derivation of the Contour Dynamics Equations

The numerical algorithm used is designed to solve a field equation of the form

V 2V, = q (4.1)

- O b, asr-*oo
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to obtain the instantaneous flow field. The particles on the boundary are then advected

by the flow according to the kinematic relations

d - - '- (4.2)

dy O

For simplicity the streamfunction is divided into two components:

= Ov + Obb, (4.3)

where b, and 'kb satisfy

2q,,(z) inside (4.4)V2 " = 0 outside

0 -, 0 asr- oo

V 20b qb = aconstant.

To facilitate comparisons with the Meddy data, the eddy potential q,, is in this case taken

in the form 2

qv(z) = -1 - bz . (4.5)

because qb is a constant, the equation for 1kb can be solved easily, while that for 0,, can

be solved using a Green's function integral. To do this, we shall make use of the free

space Green's function for the Poisson equation

1
G(z, y, z z 0, 30, zo) = --- ((1 - o)2 + (y - yo)2 + (z - zo) 2 ) - 1/2 , (4.6)

which satisfies

V2G = 6(z - zo, y- y0, z- zo) (4.7)

G -b 0, asr---- oo.

'llh, factor of -I in (4.5) will give sollitiolis which are ali 'vih ic. and hliihi t hr,for, tih in a

directim opposile to that of the soltions in Chapter 3. but will ili otherwic qualilalivel aff 't tl.ir

hhvior.
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Using (4.1) and (4.7), it is easy to obtain an integral expression for 0 using the 'multiply

and subtract' technique. This is done by multiplying (4.7) by 0,, (4.4) by G, and

subtracting the resulting equations. If the result is then integrated over all space and

the background streamfunction Obp added, an integral expression for ib is obtained. The

solution to (4.1) can therefore be written

0(-,YZ)= Pb + JJJ q.(zo)G(z,y, z lzo, yo, zo)dro+ J J(G'iP- 1k)G)doo, (4.8)

where the integration is over all space, because the fluid is assumed to be unbounded 3.

The surface integral in (4.8) vanishes if the fluid is unbounded (since the integrand goes

like r - 3 while the bounding area increases as r 2), so that the integral vanishes like 1/r

as r - oo . Thus, lo is given by

O(z, Y, Z)= Pb + fff qv(zo)G(z, y, z Iz, Yo, zo)dro , (4.9)

where the integration is carried out over the region in which q%(zo) is nonzero (i.e., the

core). Taking the gradient of (4.8) gives

= l + JJJ q.(zo) ,,ZGdro. (4.10)

Because fG is antisymmetric with respect to an interchange of z, y, z and Zo, Yo, zo, we

may write V.,2 G = -VfoYozoG. It follows that

t = fyz1Pb Jfqv(zo)xO zooGdTO, (4.11)

or, equivalently,

= V - ff ff 0 -0 Y.Z,(q.G) - Gf.o.o q }do. (4.12)

Using the gradient theorem (see, e.g., Hildebrand, 1980) the first volume integral can be

rewritten as a surf-ce integral, giving

= lb- If /qG'o + f f f Gto o qdro, (4.13)

'Ih iz a simlile miler to include a single horizowtal or verfical houndary Iy including an image vorlex
ill 11If definlilioll of I111f (,rec,' filtictioll,
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where the surface integration is performed over the dosed surface bounding the vortex.

Taking r and y components gives

-= J q,(zO)G(r, y, z zo, yo, zo)dyodzo + (4.14)Dz j

80Oy - + q.(zo)G(z, y, z zo, yo, zo)dxodzo +

where the volume integral does not appear because qt, depends only on z. Using (4.2)

these may be written

X/(z,y,z,t) = -JJq,(zo)G(z, y,z Zo, Yo, zo)dyodzo (4.15)

I(Z, y, z, t) = - JJ q(zO)G(z, Y, z zo, yo, zo)dzodzo + Ub(Z),

where it is assumed that the external flow is zonal, and depends only on z, as in the last

section of Chapter 3. The equations (4.15) are those on which the contour dynamics

algorithm is based. Notice that the velocity at any point in space is expressed as a

surface integral over the vortex boundary. However, the numerical algorithm solves

(4.15) for only those points (z, y, z) on the vortex boundary. Details of the numerical

implementation can be found in Appendix 3.

An Algorithm for Finding Steady Solutions

The process of finding steady solutions is conceptually quite simple. The prob-

lem may be succinctly stated as follows: given a lens with fixed volume, what are the

allowable steady configurations as a function of the external vertical shear? To solve

this problem numerically, the boundary of the lens is apprcximated by a number of hor-

izontal contours, which represent the intersections of a family of horizontal planes with

the boundary. The steady configurations are of course the configurations for which the

streamfunction is constant on each horizontal contour " . To find these configurations,

an iterative algorithm based on the standard Newton-Raphson root finding technique is

used. Starting with an imperfect initial guess at the boundary shape (see Figure 4.1),

the algorithm uses the calculated value of the streamfunction and its horizontal gradient

'iii a referei e fraine IraIs tillg with , I)ee(I uO
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Figure 4.1: Schematic of algorithm for finding steady states. Beginning with an imperfect guess
at the steady boundary shape, the value of the streamfunction on the boundary and its normal
gradient are used to iterate towards a steady solution.
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on a contour to adjust the boundary shape. To find a steady configuration characterized

by Oo - 4 on the boundary at some depth, the boundary points are moved according to

new = Zold - fi(O - (4.16)

Ynew = Yod - -- •
an

where 0o is in Cneral different at each depth, and is chosen such that the area within

each contour is preserved through the iteration process. The normal gradient of the

streamfunction is just the velocity along a streamline, which is computed using the

contour dynamics algorithm discussed earlier. The value of the streamfunction on the

boundary is obtained (to within an arbitrary function of z) by integrating the velocity

along a horizontal contour

V'(3) = J(vd- - udy) , (4.17)

where s measures the arc length along the contour. After each iteration, the velocity field

associated with the new boundary shape is computed, and the whole process repeated

until a desired degree of accuracy is obtained, that is, until the summed root-mean-

square deviation of the streanfunction from its expected value is sufficiently small. In

most of the solutions to be shown, adequate convergence was obtained after only 15 or

20 iterations. Due to the nature of these numerical solutions, they are not exact, and

some small time variations are inevitable. Each of the steady solutions can therefore be

thought of as the true steady solution plus some small time dependent anomaly.

There are several potential problems with the procedure used, largely resulting

from the fact that the solution space is very large. Therefore, the solution space has been

constrained in a way which will be described momentarily. The problem is analogous to

that of searching for roots in a multidimensional space - the root found depends upon

the initial guess that is made. In its most general form the problem is underconstrained,

as there are infinitely many possible steady configurations for a vortex of fixed volume

in a specified external shear. To see why this is so, recall that in Chapter 3 it was

found that, for a given a and b, the possible steady solutions were given by a forced
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component plus an arbitrary distribution m = 0 (z-axisymmetric) free modes. Each of

these m = 0 modes was found to be an exact steady solution. The form of the steady

solutions can therefore be altered by varying the distribution m = 0 modes. Because of

this nonuniqueness, it was necessary to constrain the solutions so that the area within

each horizontal contour was preserved through the iteration process, which effectively

fixes the distribution of free modes in the solution. This is justified if the steady solutions

are regarded as representing the time-mean behavior of unsteady solutions, as discussed

earlier. The constraint is stronger than merely requiring that the volume of the vortex

be preserved, and it places very strong limitations on the ways in which the profile of the

vortex can change. In particular, it ensures that the free modes are carried through the

iteration proess essentially unaltered, so that initial conditions with two lobed vertical

structure result in two lobed steady states, and spherical initial conditions give solutions

with one lobe, as shown in Figure 4.2. From the above discussion, it is apparent that by

an appropriate choice of the initial boundary shape, one could readily generate solutions

which were vertically stretched, vertically squashed, pear shaped, etc. Because in the

absence of external flow any axisymmetric potential vorticity distribution is an exact

steady solution to the potential vorticity equation (3.1), there will be a unique family

of steady solutions branching out from each of the many possible initial shapes. Each

of these families is characterized by the 0 dependence of the initial boundary shape. In

this work, attention will be focused on the spherical family (i.e., the solutions obtained

from a vortex which is initially spherical), as these are more representative of Meddy-like

vortices than are solutions with multi-lobed vertical structure.

Steady Solutions

Some simple numerical solutions are shown in Figure 4.3. As in linear theory,

all steady solutions are tilted transversely, in the present case, however, the boundary

deformations may be quite large. The figure shows a sequence of steady configurations

for a monopolar vortex (b = 0) as the vertical shear parameter a is varied from 0
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Figure 4.2: Plot showing how the initial guess influences the final steady solution which is found,
due to the requirement that the area within each contour be preserved through the iteration

process. Lin 4.2a, a spherical initi i guess results in a spheroidal steady solution, while in 4.2b a
two lobe 1 initial guess gives a two lobed steady solution.
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Figure 4.3: A sequence of steady solutions for an anticyclonic nionopolar vortex (b - 0) in external
vertical shear given by ub = az. The shear, and hence the size of the boundary deformation

increase from 4.3a to 4.3d. In 4.2a the shear parameter a is 0.0, in 4.2b it is 0.04, in 4.2c it
is 0.08, and in 4.2d it has a value of 0.12. Notice that the steady configurations are planar

antisymmetric with respect to both the (z, y) and the (z, z) planes.
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through 0.12 5. In the solutions shown the boundary of the vortex is approximated by

13 horizontal contours, each containing 30 points. The solutions look qualitatively like

tilted ellipsoids. The form of the boundary deformations agrees well with that predicted

by linear theory (see equation (3.44)). These results Pre not new, as similar solutions

have been obtained analytically by Zhmur et al. (1989) for a vortex with uniform core

potential vorticity. They are shown primarily to relate the numerical results to the

linear solutions which were discussed in the last chapter. Notice that all solutions are

transversely tilted, as predicted by linear theory. For small external shears, the boundary

deformations are small, and the shapes of the numerical solutions agree quite well with

the analytical solutions discussed in Chapter 3. In this simple case (in which the vortex is

purely monopolar), the steady solutions can be shown to be ellipsoids, and exact analytic

solutions have been found by Meacham et al. (manuscript in preparation).

Next consider the situation in which the core potential vorticity is a function of

depth (b : 0). In this case the rotation frequency varies along the rotation axis of the

lens, and the solutions are more strongly deformed near the bottom, where rotation

rates are quite small. This is consistent with equation (3.83), which shows that linear

theory predicts that the size of the linear perturbations varies inversely as the speed of

the basic flow. Figure 4.4 shows a series of solutions in which b is fixed (b = 1) and a

is varied. In (a) there is no vertical shear (c = 0), in (b) a = 0.02, in (c) a = 0.04,

in (d) a = 0.06, in (e) a = 0.07, and in (f) a = 0.08. Notice the up/down asymmetry

of the solutions, which increases as the external shear grows. There is a critical shear

(a 0.07) beyond which the solutions do not converge, due to the formation of cusps on

the boundary (as discussed by Polvani (1988) in a study of 2D vortices). The azimuthal

flow associated with the solutions 4.4a, 4.4c, and 4.4d is shown in Figure 4.5. Notice

that as the external shear increases, the axis of rotation becomes increasingly tilted, and

velocities on the bottom contour get progressively smaller. Any further increase in a

-a I.12 correspotd. to a jmtnli in t lie -extrnal flow over it,. d0. 1i h of Io. I,.in whi-i i, 3;A of if.

imixin,,m 5wirl spee d.
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Figure 4.4: A series of steady solutions in which the baroclinicity b is fixed and the vertical shear

a is varied. The value of b is set at one, and a is varied from 0.0 to 0.08. In (a) there is no

external shear, in (b) a = 0.02, in (c) a = 0.04, in (d) a = 0.06, in (e) a = 0.07, and (f) shows
the case in which a = 0.08. Beyond a = 0.07 no solutions were found due to the formation of a

cusp on the vortex boundary, which is apparent in 4.4f.
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Figure 4.5: Velocity contours showing the azimuthal flow associated with the solutions in 4.4a,

4.4c, 4.4e. The plus signs show the location of the vortex boundary.
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beyond a - 0.07 causes a stagnation point to form on the bottom contour, which has

happened in Figure 4.4f.

Figure 4.6 shows a series of solutions in which a is fixed and b is varied. In this

case there is little noticeable change in the boundary shape until a critical b is reached

(b : 1.7), beyond which no solutions are found. Figure 4.6h shows an iteration which

is in the process of diverging (it 'blows up' after a few more iterations) - notice the

sharp boundary deformation near the bottom. This solvability limit appears to be the

same solvability limit b < 5/3 discussed in the linear calculations in Chapter 3. At this

limiting b, the basic flow within the core changes sign, and according to linear theory,

the boundary perturbation becomes discontinuous. Recall that linear theory predicted

impulsive ('spike-like') boundary perturbations, which were of opposite sign above and

below the depth at which the basic flow vanished. The fact that the solvability limit

is unchanged in the nonlinear calculations indicates that the breakdown of the linear

solution is not due to the neglect of nonlinear terms, but is a fully nonlinear result, the

implication being that the breakdown of the linear solution cannot be remedied by a

localized 'patch', as was speculated in the last chapter. Figure 4.7 shows the azimuthal

flow for these solutions. Notice that the variation in rotation frequency along the axis

of the vortex grows with increasing b. The small rotation frequencies near the bottom

of the core are indicated by the spreading of the velocity contours at the bottom.

In Figure 4.8 the region of (a, b) space in which solutions were found is shown.

The solution space is bounded by two distinct curves: a horizontal line at the top, and a

sloping curve (solid line) to the right. The horizontal line coincides closely with the linear

solvability limit b = 5/3 ; 1.67. However, numerical solutions have been found for which

b is slightly larger than the limiting value predicted by linear theory (b 1.70). This is

due to the limited vertical resolution of the numerical solutions. This lack of resolution

causes the flow reversal in the core to occur at a slightly different value of b than in

the analytical solutions, resulting in a slightly different solvability limit. Numerical runs

using variable vertical resolution seem to confirm this hypothesis. Next, for any b there
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Figure 4.6: Figure 4.6 shows a series of steady configurations for an anticyclonic baroclinic lens
in shear. The external vertical shear is fixed at a 0.03, and b is veri'-d from 0.0 to 1.75. In
(a) the baroclinicity b = 0, in (b) b = 0.25, in (c) b = 0.50, in (d) b = .75, in (e) b = 1.0, in (f)
b = 1.25, in (g) 6 = 1.50, and (h) shows the case in which b = 1.75. The last run shown (h)
diverged, so this is not a st,,ady solution. The slutions trrnlat, through the ambient water as
a result of the propagation tendency of the dipolar component of the potential vorticity field.
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Figure 4.8: Diagram showing the region of the (ct, b) plane in which steady solutions have been
found. The heavy line represents the solvability limit beyond which no steady solutions can be
found; the heavy dashed line is the linear stability limit. The dash/dotted contours show the
speeds of the numerical solutions; the solid contour lines show the yz moment of the core volume
(see text).
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is a maximum shear a beyond which no solutions can be found. This is shown by the

sloping line at the right of the figure. A similar solvability limit (maximum shear) was

found in the point vortex solutions discussed in Chapter 2, but no limitations on the

baroclinicity of the solutions were found. The dashed line shows the location of the

linear stability boundary, which will be discussed in detail in the next section. Along the

solvability boundary the solutions tend to develop cusps, indicating that a stagnation

point has formed on the boundary. The cusps develop first near the depth where the

core rotation rate is least - at the bottom of the lens. If the shear is increased beyond

this point the external flow dominates the flow within the core, and it is clear that there

can be no steady configurations in this case. The tilt of the a solvability limit shown

in Figure 4.8 is closely tied to cusp formation: the larger b is, the smaller the rotation

frequency at the bottom of the lens will be; the smaller the rotation frequency, the

smaller the external flow need be to produce a cusp on the boundary.

The contours shown in Figure 4.8 represent the translation speed of the vortex

solutions (dashed lines), and the deformation of the core (solid lines), as measured by the

My-. moment of the vortex core. To compare the deformation observed in these solutions

with linear theory, a rough integral measure of the boundary deformation is used. In

Figure 4.9a the yz moment (M,. = r - I fco0 e yzdr) for the numerical solutions is plotted

vs that predicted by linear theory. This moment is a measure of the deformation and

tilt of the boundary in the yz plane, and is maximum (for a given amplitude) when the

boundary is tilted at 450 to the horizontal. Note the good agreement for small a. If a is

large, the deformation of the numerical solutions is somewhat larger than linear theory

predicts, but no qualitative change in the solution behavior is seen. In Figure 4.9b the

speed of the solutions is plotted vs ab. The solid line shows the speed predicted by linear

theory: uo = ab/5. Notice that the agreement with linear theory is very good for all

a. The fact that the core deformation is a simple function of a, and the speed a simple

function of ab indicates that the speed u0 can (in principle) be written as a function

of the baroclinicity b and the core deformation, in analogy with equation (3.69). The
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Figure 4.9: In Figure 4.9a the moment M, (see text) is plotted as a function of a for the
numerical and analytical solutions. In 4.9b the vortex translation speed is plotted as a function
of the external shear o and the core baroclinicity b. The solid lines represent the predictions of
the linear model discussed in Chapter 3.
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good agreement between the speeds of the numerical solutions and the predictions of

linear theory is surprising, as it extends well into the regime in which nonlinearity might

naively be expected to play an important role. This brings into question the role of the

nonlinearity in the translation of the vortices. Apparently, either the nonlinearity in the

numerical solutions is small enough that they are effectively linear solutions, or else the

linear speed is really a fully nonlinear result.

It turns out that the nonlinearity is not necessarily small, which can be shown

using the kinematic condition (3.15)

'7t + uo(sin 0 cos 0 - Icos 0 cos ,e + 1 si ) + 00/r - cot O'.1e/r2 +
r r s-m7

u(4 )i7,/r sine = 0, on r = 1 + 17. (4.18)

Setting r = 1 + 7 and decomposing the streamfunction 0 and the azimuthal velocity u(0)

into basic state plus perturbation quantities (as in Chapter 3), it follows that (4.18) is

given to O(172) by

sin 0"it + uo(sin~cos - cos #cos4 bqe + ---- i,) +( ( + 1,b)4(l - 11) - cot O( ' + 'l.b)ble +

+ uo)lT (l -7)/sin6+(uo)+ub(,))v1o/sin6= 0. (4.19)

To estimate the nonlinearity of the solutions we can consider the last two (underbraced)

terms, which represent the two term expansion of u()1,O/ sin 0. In the linear calculations

in Chapter 3, this term was represented by the linear term u ',)il 4,/ sin0. Equation (4.19)

shows that the ratio of the nonlinear correction to the linear term is given by

MAX(i,) (4.20)

Therefore, the nonlinearity is large if the boundary perturbations are large (17 = 0(1)), or

if the perturbation velocities are not small compared to the basic flow speeds. It follows

that the nonlinearity will be large when the rotation frequency in the core u('4 ,)/ sinG is

small at some depth, even if the boundary perturbations are not large. This is the case

for very barocinic solutions, in which case the rotation frequency approaches zero near
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the bottom. It is clear that v = 0(1) for some of the solutions shown in Figures 4.3 and

4.4, so that the nonlinearity is of 0(1).

It turns out that the good agreement with linear theory apparent in Figure 4.9 is

a result of the fact that the linear translation speed uO = ab/5 is a fully nonlinear result.

To show this, recall from Chapter 3 that the speed is defined to be the translation speed

of the center of potential vorticity of the lens:

Uo = zdQ7 = dI- qzd-r = Q-' j qudr , (4.21)

where

Q =jf ,dr . (4.22)

It should be emphasized that the speed was defined in this fashion because u0 (as defined

by (4.21)) is a constant - even if the flow is unsteady. Thus (4.21) is the most appropriate

definition for the translation speed of the solutions, since it is readily generalized to

unsteady flows. If the alternative definition uo - f had been used, we would have

found that the translation speeds were the same as those given by (4.21) in the steady

limit, but that the translation speed would in general have some periodic component

superimposed if the flow was unsteady. This can be seen from the relation

= -47Y b' , (4.23)

which is easily derived if one recalls that q,, -1 - bz. Thus, the volumetric center of

the core differs from the negative of the 'center of potential vorticity' by a term which

measures the 'tilt' of the boundary in the zz-plane. Because this term is periodic in

time for unsteady solutions, while T-7 will be shown momentarily to be secular in time,

will in general be a periodic function of time.

Using the definition (4.21), the close agreement between the numerical solutions

and the linear theory can be explained by noticing that only the external flow ub con-

tributes to the integral (4.21); the contribution from the internal flow vanishes identically.
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Using (4.12) the zonal velocity can be written in the form

If = 1 (:Oyo, o)(y -YO) dr
41r ((z - Zo)2 + (y - yo) 2 + (z - zo) 2 )3 / 2  (4.24)

It follows that the integral in (4.21) can be written

Q1 -q,,udr = Q f qudr-1 f f q-ZyZ~-Z y, (- IO) -drodr,
eLe4iQ Jcre ((Z - a'O) 2 + (yt - yo)2 + o(- )2 )3/ 2

(4.25)

where both volume integrations (with respect to r and To) are carried out over the

core region. The symmetry properties of the integrand show that the second integral

on the right side of the equation vanishes. This is due to the fact that the sign of

the integrand changes if the subscripted and unsubscripted variables are interchanged.

Thus, if the integrand is written as the function f(z, y, z I zo, yo, zo), the contribution to

the integral from the elemental volume at (z, y, z 1 zo, Yo, zo) exactly cancels that from

(zo, yo, zo I z, y, z) for all (zo, yo, zo I x, y, z) inside the core s. This demonstrates that the

contribution to the integral from the mutual interactions of any two elemental volumes

vanishes. Therefore, the second integral vanishes identically and (4.21) reduces to

U0 = Q Zo1 qvubdr. (4.26)

This shows that in the absence of external flow (ub = 0), the 'center of potential vorticity'

of the lens must remain fixed. Finally, because the external flow is purely zonal (Vb = 0)

the lens can only move in a zonal direction, since Q- 1 f~or qvdr vanishes identically.

The next step is to show that the expression for uo obtained by evaluating (4.26)

has the same functional form in the linear and nonlinear cases. Because q,, and ub depend

only on z, carrying out the integrations in x and y gives

UO = Q-1 q(z)ub(z)A(z)dz , (4.27)

where A(:) is the area enclosed by the horizontal contour at depth z. Now consider a

family of steady solutions in which qv(z) is fixed and a is varied. Notice that A(z) is the

4,111i. rftit1 dioes Ilo depfttt l)O11 *y ,ry |prop.-ri ies a t ii,' l,)ottialary. or tpoi, ti e.. soittitn
116e 1M n ' %sI . b1t 011]" %. OII li) e fac l IIaI ot h it egratioti (with rIt .spect to r and tro) are c'arritd o11
over Ihe eltire core- Vol t ue.
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same for all of these solutions, since the area within each contour is preserved through

the iteration process. Using the definitions ub = az and q, = -1 - bz, (4.27) can be

rewritten

-' 
1 zA z)dz - cib z2 A(z)dz. (4.28)

The first integral vanishes because A(z) is symmetric (so the integrand is odd) for the

spherical initial boundary shape considered here, so that

_ +V j z2 A(z)dz . (4.29)

Notice that neither Q nor the integral in (4.29) change as a is varied, even if the boundary

of the vortex boundary becomes very distorted. Therefore, the term Q-1 f z2A(z)dz

must be as given by linear theory (see the Appendix), and evaluating (4.29) gives
1

u0 = -ab. (4.30)

The minus sign in (4.30) appears because of the minus sign that was introduced into

the definition of qv(z) (see (4.5)). Thus, the translation speed (4.30) is a fully nonlinear

result, which explains the good agreement between the linear speeds and those of the

numerical solutions.

The propagation speed (4.30) may be thought of as a weighted average of the

external flow speed over the core region (as in (4.30)), or else as the external flow velocity

advecting the center of potential vorticity of the lens. However, the physical reason for

the translation is the modon propagation tendency associated with the self-interaction

of the baroclinic component of the potential vorticity field, as discussed in Chapter 3.

The propagating point vortex pairs considered in Chapter 2 were interpreted in a similar

fashion - as barotropic pairs with a dipole component superimposed. It was shown

there that the translation of the pairs could be explained by the tendency of the dipolar

component of the field to self-propagate. A major difference is that in the present

case there is a maximum baroclinicity b for which such solutions can be found, so that

the propagation speed of the continuous solutions always lies within the rar"e of the
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external flow speeds advecting the core. For large ab values, the propagation speed of

the numerical solutions lags very slightly behind the linear speed. This discrepancy is

due to a numerical error associated with the fact that at large ab (when the boundary

perturbations may become quite sharp) the boundary is consistently less well resolved

near the bottom than at the top. This can lead to a systematic computational error in

the relative volumes of the upper and lower halves of the vortex, and hence to a slightly

different translation speed.

Initial Value Runs: Stability

To investigate the relationship between steady and unsteady behavior, a numerical

run will be shown for which the vortex is not initially close to an equilibrium. Figure 4.10

shows an integration in whicb an initially spherical, anticyclonic monopole (b = 0) is

placed in an external shear a = 0.05. Initially, the evolving boundary perturbation

reflects the advection by the external flow. Further along in the integration, the boundary

perturbation begins to precess in a clockwise sense, as predicted by linear theory, and is

in a tilted configuration qualitatively like those shown in Figure 4.3 after a time t ; 30.

The boundary continues to precess, and after a time t - 60 is once again in its initial

configuration. Thus, the motion is apparently periodic, with the lens being alternately

stretched out and recompressed by the external flow. The period of the motion is about

three times the rotation period of a fluid parcel in the core. On average, however, the

lens is tilt,4d in a direction transverse to the external flow, just as the steady solutions

are. In Chapter 3 it was shown that such time dependent solutions can be thought of as

steady, forced solutions with a freely precessing component superimposed.

The fact that the only steady solutions that exist when I b 1 5/3 are perfectly

spherical vortices with zero external shear leads one to question the stability of these

solutions. The analysis in Chapter 3 showed that there were no exponentially growing

modes, but the impulsive nature of the boundary perturbations seems to indicate some

form of instability. Therefore, the stability of these highly baroclinic solutions will be

re-examined numerically. Figure 4.11 shows that when the vortex is given a small initial
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Figure 4.11: Plot of a forward run for a purely baroclinic vortex in a quiescent fluid. When
perturbed with a (1,2) boundary perturbation, the vortex quickly evolves into a state qualitatively

like that predicted by linear theory, characterized by large boundary deformations near the level

at which the basic flow changes sign.
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perturbation of the form e sin 20 sin 4 (representing a tilted ellipsoidal perturbation), the

boundary evolves into one with slab-like extrusions of core fluid near the middle of the

lens. As time goes on the boundary becomes increasingly deformed, and eventually ap-

pears to be evolving toward a state like that predicted by linear theory (see Figure 3.7b).

When the integration is stopped, the boundary perturbations have become large on ei-

ther side of the point where the basic flow in the core changes sign. As discussed in

Chapter 3, this behavior is due to the presence of a steering level at the depth where the

basic flow changes sign.

To investigate the stability of the steady solutions with respect to small pertur-

bations, a series of numerical integrations will now be shown. In each of these runs the

vortex boundary is represented by 17 layers, with 40 points on each layer. At each time

step, the points on each contour are redistributed so that they are evenly distributed.

Figure 4.12 shows a series of forward runs which examine the stability of some of the

steady solutions. It is found that the perturbed solutions either settle into a periodic

motion, or else a certain amount of core fluid is torn off by the external flow before they

(presumably) reach some new equilibrium. Limitations of the numerical procedure used

do not allow an exploration of the form of the new equilibrium. Attention is focused on

solutions which are close to the solvability limit shown in Figure 4.8, as we wish to deter-

mine whether there is a linear stability limit within the solvability region. It is found that

the stability boundary is different from the solvability boundary, as shown in Figure 4.8.

The solutions are perturbed by varying the external shear slightly from the equilibrium

value. The perturbations were small in the sense that the variation of the external shear

was very much smaller than the equilibrium shear (Aa/o < 1). For a baroclinic vortex,

varying the shear produces a boundary perturbation which is a combination of many

normal modes, so it is likely that any unstable modes will be present. Because the linear

calculations showed the basic state to be stable when I b j< 5/3, we have no information

on the possible growth rates of unstable modes. Therefore, the integrations were con-

tinued until it became reasonably clear that the vortex had (a) settled into a periodic
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Figure 4.12: A series of forward runs using the numerical steady solutions as initial conditions.
The solutions have been perturbed by varying the external shear slightly (Aa/ < 1). The initial
conditions for these runs are close to the solvability limit shown in Figure 4.8. The numbers shown
beneath each plot give the values of a and 6 for the basic state solution. The first two frames show
runs representing purely monopolar vortices, while the baroclinicity b gets progressively larger in
the remaining frames. For small external shears the perturbed numerical solutions behave like
the steady solutions, with a small time dependent component superimposed. For larger shears,
the perturbed solutions may be unstable, in which case they are 'puUed apart' by the external
flow.
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mode of behavior, or (b) been irreversibly distorted by the background flow. Most of

the integrations were carried to t = 128, which is approximately 61 rotation periods for

the monopolar vortex solution (recall from Chapter 3 that the rotation period for a fluid

parcel in the core of a monopole is 6ir r 19).

Figure 4.12a shows a run in which a steady monopole in a shear given by a = .10

is weakly perturbed (a -- 0.102). Notice that the perturbed vortex wobbles slightly

around its equilibrium shape, but no qualitative changes in shape are seen. However,

the situation is qualitatively different in Figure 4.12b, in which the initial condition is

a steady monopole in a slightly larger external shear a = 0.12. When the solution

is perturbed by increasing a to 0.122, the vortex is rapidly and apparently irreversibly

stretched out by the external flow. This behavior is like that of the point vortex solutions.

Recall from Chapter 2 that steady solutions in vertical shear became unstable if the shear

(and hence the tilt) was too large. This was explained by noting that if the tilt of the pair

is relatively small, then separating the vortices slightly leads to a stronger interaction

(i.e., a larger mutually induced relative velocity) between them. On the other hand,

strongly tilted pairs interact less strongly when separated slightly, and are therefore

less able to withstand external perturbations. Apparently the mechanism at work in

Figure 4.12b is similar, as there appears to be a well defined maximum tilt beyond which

any further tilt causes the vortex to be infinitely elongated.

The remainder of the runs shown in Figure 4.12 represent integrations from initial

conditions with various values of a and b. The location of the initial conditions in

(a, b) phase space is chosen close to the solvability limit shown Figure 4.8. When the

baroclinicity is small, the unstable vortex is elongated at both ends simultaneously, as

shown in Figure 4.12b,c. For larger b, the elongation of the core is increasingly confined to

the bottom, where flow speeds are small, although the character of the elongation appears

to be similar. Figure 4.12h shows a run in which the steady anticyclone characterized

by b = 0.75, a = 0.060 is subjected to a slightly larger shear a = 0.062. Notice that the

perturbed solution exhibits a periodic modulation while translating to the right, but its
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character is still accurately described by the steady state solution in the sense that the

average shape looks very much like the basic state solution. In this case the increased

shear causes the vortex to rotate slightly in a counterclockwise direction, leading to

further elongation by the external flow. However, this elongation stops when the vortex

rotates back to the right, and is 'recompressed' by the external flow. The perturbed

solution appears to have settled into a periodic mode of behavior, and is therefore stable.

Closer to the solvability boundary, fluid from within the core can be pulled away by the

external flow. In Figure 4.12i, a run is shown in which the steady solution for which

b = 0.75 and a = 0.070 is subjected to an external shear of a = 0.072. Notice that the

vortex again translates to the right, as linear theory predicts, but at tM96 the boundary

perturbation becomes very steep near the bottom of the lens, as some core fluid is torn off

by the external flow. Soon after this the integration is stopped due to lack of resolution.

In reality, the lens would presumably lose a certain amount of core fluid before settling

into a new (probably unsteady) equilibrium. The form of the extrusions is similar to that

found by Beckmann et at., (1989) in a 9 layer QG simulation of Meddy movement on a

P-plane. They found that as the Meddy drifted extrusions of core fluid were periodically

lost to the surrounding waters. Notice that the solution in 4.12h exhibited a periodic

nutation. For stable solutions the angular extent of the nutation is determined by the

size of the perturbation (relative to the deformation of the boundary in the initial steady

state) - the larger the perturbation, the larger the wobble. Whether fluid is pulled away

from the core apparently depends upon the relative sizes of the nutation period of the

perturbed vortex and the time scale for core deformation by the external flow. If the

nutation period is small, then the lens will complete a nutation cycle (being elongated

and then recompressed) before it can be irreversibly deformed by the external flow.

In the remainder of the runs shown, the baroclinicity is progressively increased. The

behavior of the solutions is similar to that described above, with solutions well within

the solvability region being stable, and those close to the boundary being unstable.

For large b the breakdown of the solutions appears to be similar to that for small b,
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with extrusions of fluid being lost from the core. However, as a result of the increasing

up/down asymmetry of the basic flow for increasing b, the loss of core fluid is increasingly

confined to the bottom of the lens. From these runs, the location of the linear stability

limit in (a, b) space has been inferred, and it is shown by the sloping dashed line in

Figure 4.8. This stability limit is dearly shifted with respect to the solvability limit

discussed earlier. However, the sizeable region of (a, b) space in which the solutions are

found to be stable indicates that the solutions are in general quite robust.

The behavior of the continuous model is similar in many respects to that of

the point vortex model discussed in Chapter 2. There are, however, some important

differences. Both models give translating solutions with trapped fluid cores, and both

seem to be capable of qualitatively representing the low mode behavior of a baroclinic

eddy in shear. Because the point vortex model represents only the lowest few modes of

the continuous model, it cannot model high mode number phenomena i.e., those with

small vertical scales), such as the steering level phenomenon or the formation of cusps.

These effects are responsible for the limiting 6 (1 b 1!5 5/3) that was found, and for the

slope of the a-solvability limit in Figure 4.8. It follows that there is no limit to the

asymmetry of a point vortex pair (as measured by A), and neither the solvability nor

the stability of the solutions depends upon A. Another important difference is that for a

given value of the external shear there are in general two possible steady configurations,

while the continuous model apparently admits only one. This difference is not very

surprising, since the point vortex representation of a continuous potential vorticity field

is only strictly valid when the continuous field is comprised of two widely separated blobs

- a situation not considered here. Despite the various problems associated with the use

of a point vortex representation of a continuous potential vorticity field, it nevertheless

seems to give a good qualitative representation of many of the important aspects of the

behavior of the continuous model.
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Sumnary

The properties of finite amplitude steady vortex solutions have been discussed.

The qualitative character of the solutions agrees well with that of the linear solutions

discussed in Chapter 3 over much of the parameter space. In particular, the propagation

speeds are in good agreement with the linear values. It was shown that this is because

the linear propagation speed is in fact a fully nonlinear result. In addition, the shape

of the deformed boundary is qualitatively well described by the linear solutions. The

solvability limit associated with the barodinicity of the flow in the core appears to be the

same in the linear and nonlinear cases. In contrast to the linear solutions, the numerical

solutions predict the maximum vertical shear Q for which solutions can be found. This

critical shear decreases as the baroclinicity b of the solutions increases. For small shears,

the solutions are stable, since introducing a small perturbation leads only to a periodic

modulation of the steady solution. At larger shears, the solutions are unstable to small

perturbations, as perturbed vortices are rapidly and irreversibly stretched out by the

external flow. The stability boundary is fairly close to the solvability limits shown in

Figure 4.8, so the solutions are stable with respect to small perturbations unless they

are quite close to the solvability boundary.
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Chapter 5
Float Analysis

This chapter presents new results obtained from a recent SOFAR float experiment

which show a Mediterranean Salt Lens being deformed by external flows. In addition,

the propagation of the lenses through the surrounding waters (Richardson et at., 1989)

is related to the external shear and the potential vorticity structure inside the core using

the analytical results discussed in Chapter 3. The data are taken from the SOFAR Float

Mediterranean Outflow Experiment (Price et at., 1986; Zemanovic et al., 1988) in which

Mediterranean Salt Lenses (Meddies) were seeded with floats and the first continuous

record of the life history of a Meddy was obtained. Three different Meddies were seeded:

one with with five floats, another with two, a third with a single float. Many more

floats were deployed in the surrounding waters. Figure 5.1 shows the trajectories of

three of the Meddy floats as they move with the Meddles. The data contain information

pertaining to the structure of the flow within the Meddy core and on the motion of

Meddles with respect to the surrounding water. Richardson et al. found that Meddes

moved at 1.4±0.3 cm s- I relative to floats at similar depths outside of Meddles. In the

present analysis, a tilting of the rotation axis of the Meddy has been observed, which is

presumably due to the influence of external shear. In what follows, we shall interpret

these observations using the model discussed in Chapter 3.

Our analysis focuses on Meddles 1 and 2, as each of these contained at least two

SOFAR floats at different depths, which is necessary to resolve the vertical structure of

the core deformation. Meddy 2 contained two floats, which were separated by roughly

100 m in the vertical. Meddy 1 contained a total of five floats, but the pressure sensors

on several of the floats did not function properly, so their depths are not well known. In

some cases, however, it was possible to infer the depth of the float from the temperature

record, using the temperature structure for this Meddy found by Hebert (1988). Using

this procedure, we deduced that float EB150 was at approximately 1220 db, about 120 m

beneath EB128, which was at 1100 db. The three remaining floats in the this Meddy:
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Figure 5.1: Trajectories of three SOFAR floats in three different Meddies (from Richardson et

al., 1989). Two floats were deployed in Meddy 1, five in Meddy 2, and one in Meddy 3.
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EB140, EB141, and EB143, were all near the 1100 db level, and were therefore not used

in the analysis. The float data show that the flow within the core of a Meddy is strong,

with typical azimuthal velocities of some 20 cm s- 1 at a distance of 20 km from the

center. By core we refer to the region of warm and salty water in which swirl velocities

are found to increase linearly with distance from the rotation axis, rather than to the

entire region of trapped fluid which moves with the Meddy. Although the flow within

the core is approximately in solid body rotation over certain depth ranges, the trajectory

of float EB145 shows that the rotation frequency may be still be a strong function of

depth within the core. The looping period of this float decreased from approximately

23 days to just 12 days as the float rose from 1300 db to 1050 db within the core. This

acceleration happened over a rather narrow depth range (about 40 db), suggesting an

almost discontinuous change of rotation frequency with depth. It should be emphasized

that the float temperature stayed fairly constant at about 7.5 0 C while the float rose

by 250 db, implying that the float was indeed in the core of the Meddy all the while.

Rotation rates in Meddy 1 also varied significantly with depth: float EB128 looped

with a six day period at the 1100 db level, while EB150 looped with a period of 16

days at 1220 db. In this case, however, a comparison with Hebert's data indicates that

EB145 was probably slightly beneath the Meddy core. Thus, the different rotation rates

measured for this Meddy are probably not due to the baroclinicity of the core alone.

The structure of the mean flow field in the Canary Basin is not well known.

Perhaps the most detailed information can be found in the study by Saunders (1981), who

computed geostrophic velocity profiles from several sections in the eastern North Atlantic

(Figure 5.2). The two southernmost sections (one at 32N and another extending from

30N/25W to 38N/17W) show that the flow is generally southward with larger velocities

near the surface. The 32N section shows a variation in the flow speed of about 0.3 cm s-i

between 1500 db and 500 db, while the second section shows a much larger variation of

about 2 cm s- over the same range of pressures. Finally, it is interesting to notice that

at 32N there is virtually no meridional flow at 1000 db, near the core of the Salt Tongue
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Figure 5.2: Geostrophic velocity profiles along several sections in the eastern North Atlantic (from
Saunders, 1981). The southernmost two sections show the vertical profile of the large scale flow
in the study region. A significant vertical shear is present in the study region, which amounts to
a variation in flow speed of about 2 cm s- over the depth of a Meddy core.
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(Saunders, 1981), which is consistent with the observation that the mean velocity from

nearby floats outside Meddies was quite low.

Data Analysis

To investigate the tilt of the rotation axis of the Meddies, it was necessary to

calculate the center of rotation from float trajectories at different depths inside the core.

A low pass filter was used to remove the looping component from the float trajectories,

and to give an estimate of the position of the lens center as a function of time. This

technique worked quite well in general, because of the large spectral gap between the

looping motions of the floats and the motions of the lens as a whole. However, the

technique failed when the trajectory of the lens turned sharply, or when the looping

frequency of the float changed suddenly. In such cases the trajectory was split into

two or more sections, and the different sections processed independently. In the present

analysis only well behaved sections of the trajectories were used. Due to the different

looping frequencies of the floats, it was nevertheless necessary to use several different

filters in the analysis. For float EB150 a 61 day moving average filter having Gaussian

filter weights with a standard deviation of 11 days was used, providing a frequency

response of 0.5 at a frequency of about -L cycles/day, with higher frequencies being

more strongly attenuated. For EB128 a 31 day filter with a standard deviation of 5.7

days was used, giving a frequency response of 0.5 at - cycles/day. For floats EB148

and EB149 a filter with a standard deviation of 4.0 days was used, giving a frequency

response of 0.5 at -L cycles/day.20

An alternative (and somewhat less direct) way to accomplish the same thing is to

divide the time series of positions into a number of shorter sections, fitting each section

to a simple model of the form

x.(t) = x.o + Lt + R, cos(wt + (5.1)

y.(t) = y,,o + V,.,t + R , sin(35,,t +
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where the subscript n refers to the nth section. Thus, each section of a trajectory was

decomposed into a linear drift plus a circular looping component. The model param-

eters were fitted using standard nonlinear least-squares algorithms found in Numerical

Recipes (Press et al., 1986), which gave satisfactory results when the initial guesses were

reasonably good. This technique seemed to give results inferior to those of the low pass

filtering technique 1, so we have used the filtering technique exclusively.

Careful examination of the results shows a systematic lateral shift between filtered

trajectories from floats at different depths. To illustrate this, daily realizations of the

configuration of Meddy 2 were plotted for the period from 14 February 1986 through

18 April 1986 (see Figure 5.3a). This section of the trajectory was chosen because it

is fairly well behaved, with no sharp corners, so that the fitering method should work

quite well. The most notable aspect of the plot is the apparent tendency of the Meddy

rotation axis to 'tilt' in a direction perpendicular to the drift direction of the Meddy,

with maximum displacements of almost a kilometer in late June 1986. Notice that the

top of the lens is shifted to the right with respect to the drift direction of the Meddy. The

core was in this tilted configuration for all but one of the nine weeks shown. Figure 5.3b

shows a similar plot for Meddy 1, using the trajectories from floats EB128 and EB150

for the period from 23 January, 1986 through 11 March, 1986. The general pattern is

the same, with displacements normal to the drift direction of the Meddy, and the top of

the lens deflected to the right. In this case the observed displacements were much larger

than those seen in Meddy 2, sometimes exceeding 10 km.

The large observed displacements are probably a result of float EB150 being in

the region of trapped fluid beneath the actual core, which may become very distorted

as the Meddy moves. It is also possible that the large tilt is due in part to the fact that

the Lagrangian center of an eddy is displaced from the Eulerian center if the eddy is

in motion (Flierl, 1 179). If the rotation frequency is the same at the depths of the two

'li" ik wiroblb N d, I o the fac t fact tihal ile mramei't'rs U, antd V-,, a r, derivative. of tilt- original posit ion

lim- svri('. which oUld t(,(I to amiplif v aniy -rrorr in ie cRcIIla ion.
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5.3a

Figure 5.3: Daily realizations of Meddy drift velocity, represented by arrows, and 'tilt', shown
by a line connecting the centers of rotation at different depths. Figure 5.3a shows Meddy 2
during the period from 14 February, 1986 through 18 March, 1986. The triangle in Figure 3a
represents the position of the lens center given by float EB149, at an average pressure of about
1050 db, while the square gives the position of the lens center computed from float EB148, at
an average pressure of 1160 db. The drift velocity of the Meddy is scaled such that the longest
arrow represents a velocity of about 4 cm s- . Figure 5.3b shows the data from Meddy 1 between
23 January, 1986 and 11 March, 1986. The triangle represents the center at the 1100 db level,
while the square gives the center at about 1220 db. In this case the longest arrow represents
a velocity of about 3 cm s - 1. Notice that in each case the Meddy has a tendency to tilt in a

direction perpendicular to its drift direction.
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floats, then the displacement of the centers will not vary with depth, and there will be

no 'Lagrangian tilt'. This is the case for Meddy 2, for which the rotation frequency of

the two floats was almost identical. For Meddy 1, however, the situation is different, as

the rotation frequency of the upper float is almost three times that of the lower float.

If the Meddy moves at roughly 1 cm s- 1, and the rotation frequencies of the two floats

are 1 cycle/6 days and 1 cycle/16 days, respectively, a simple calculation shows that the

Lagrangian tilting effect leads to a displacement between the centers at the two depths

of about 1.4 km. Since the observed displacements are much larger than this, they must

be primarily due to some other effect. It seems more likely that they can be explained

by float EB150 being in the region of trapped fluid beneath the core of the Meddy.

Looking once again at Figure 5.3, we see that there are periods of time in which

the lens is clearly not in the tilted configuration discussed above. In particular, during

the period from 19 May through 29 May Meddy 2 appears to 'wobble' briefly, before

returning to the tilted configuration. It is reasonable to interpret this behavior in terms

of the natural precession tendency of the deformed lens, as discussed in Chapter 3. This

sort of behavior could, for example, be caused by a variation of the shear outside the lens.

The 'wobbling' in Figure 5.3a is consistent with a weakening of the external shear. The

decreased external shear would lead to an anticyclonic precession of the lens, which would

in turn result in a gradual 'recompression' of the lens by the external flow. Continuing to

precess beyond this point, the lens might eventually approach a new equilibrium similar

to the first. Unfortunately, the variations in the external shear are completely unknown,

and the resolution of the data limited, so this interpretation is necessarily speculative.

Figure 5.4 gives a statistical summary of the information in Figure 5.3. Each of

the squares in 5.4a marks the tip of a vector, the length of which measures the ratio of

the drift speed of the Meddy to the horizontal displacement of the rotation axis. Thus,

if the propagation speed were proportional to the deflection of the rotation axis, the

vectors would all have the same length. The inclination angle E is the angle between the

displacement vector and the velocity vector. Notice how the points tend to cluster along
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Figure 5.4: Statistical summary of Meddy velocity and tilt data from Figure 5.3. Each of the daily
realizations in Figure 4 is represented by a vector of length e and angle Li, where I is the ratio

of the drift speed to the horizontal displacement of the rotation axis. The squares represent the
tips of these vectors. In 5.4b the z separation of the rotation axis is plotted against the v velocity
component (squares), and the negative of the y separation vs the u velocity component (triangles),
showing the apparent correlation between the deflection of the rotation axis and the speed of the
lens.
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the vertical axis, illustrating the tendency for the rotation axis to be deflected at right

angles to the drift direction of the lens. Plotting the data in a slightly different way shows

an apparent relationship between the deflection of the rotation axis and the translation

speed of a Meddy. In 5.4b the z separation of the centers of rotation is plotted vs the

v velocity of the lens, and the negative of the y displacement vs the zonal velocity of the

lens. Plotted in this way, a straight line through the origin would represent the case in

which the propagation speed is proportional to the tilt. This shows quite clearly that for

Meddy 2, large displacements of the rotation axis are associated with rapid translation.

For Meddy 1 the relationship between the propagation speed and the tilt of the axis is

not so clear. We speculate that (as noted before) this is due to the fact that EB150 was

not in the core of the Meddy.

Comparison with the Model Results

The behavior illustrated in Figures 5.3 and 5.4 may be usefully interpreted in

terms of the simple model discussed in Chapter 3. As a consequence of the idealized

nature of the model, detailed agreement with observation should not be expected. For

example, the modeling results assume that the Burger number S has a value of one,

while observations seem to indicate that $ ; 0.23 is more realistic. Our hope is simply

to convince the reader that the dynamics inherent in the model solutions may play a

significant role in the behavior of Mediterranean Salt Lenses. In Chapter 3 it was shown

that when external shear is present, steady states are possible in which the tendency

of the boundary disturbance to precess is counterbalanced by the advection due to the

external shear. Figure 3.5a illustrates one such steady configuration, in which the eddy

is tilted in a transverse sense by a vertically sheared background flow. The results

discussed in Chapter 3 show that the magnitude of the 'tilt' for such a configuration is

directly proportional to the strength of the external vertical shear. It was shown that

the amplitude of the boundary perturbation for the model vortex in an external vertical
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shear given by ub. = a.z. is

17 1= (5.2)

where an asterix denotes a dimensional quantity. Here D is the half-depth of the lens,

R is its radius, U,,.. is the the maximum swirl speed inside the lens, a. is the vertical

shear of the external flow, and I i7i. I is the amplitude of the boundary deformation

caused by the external flow. If we let D = 500 m, R = 25 kin, U,,. = 20 cm s-1, and

a. = 2 x I0 - 5 s- 1, giving a variation in the external flow speed of 2 cm s- I over the core

depth, it follows that

I i,. J= 1.6 km.(5.3)

This is in good agreement with the results shown in Figure 5.3a, if we assume that the

displacement of the rotation axis is comparable with the size of the boundary deforma-

tion. However, because the floats are quite closely spaced in the vertical (t100 m), it

is likely that the full extent of the tilting is not seen. The displacements observed for

Meddy 1 are significantly larger than this, perhaps indicating very large external shears,

or else that the float is not in the core at all, but is instead in the region of trapped fluid

outside the core. Based on the earlier discussion of the depth of this float, we believe

that it was in fact located slightly beneath the Meddy core.

In Chapter 3 it was demonstrated that the propagation speed of a lens-like f

plane quasigeostrophic vortex in a stratified fluid in a flow with constant vertical and

horizontal shear relative to the ezternal flaid is given by

1 b.D
5 (5.4)

The parameters a. and b. describe the potential vorticity within the core of the model

vortex: q,,. = a. + b.z.. If b. = 0 the potential vorticity within the core is constant, and

the core region will be in pure solid body rotation. If b. is nonzero, the rotation frequency

will vary with depth in the core. This flow is consistent with that reported by Richardson

et al. (1989) for a real Meddy. Thus, the model predicts that the translation speed is

completely determined by the form of the potential vorticity field within the lens and
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the magnitude of the external vertical shear. For a Meddy such as Meddy 3, reasonable

estimates of the baroclinicity give b*D 1, implying that depth variations of the core

potential vorticity are comparable with the absolute values. Estimates for Meddy 1 give

about the same value. Within the conteXt of the model discussed in Chapter 3, bSD ; 1

implies that the rotation rate varies by a factor of four over the core depth. It should be

emphasized that this estimate is very approximate, as the floats typically undersample

in the vertical (they are designed to remain at a fixed pressure level). The only thing

that can be said with certainty is that the flow within the core of a Meddy may be

quite baroclinic, and therefore it is not unreasonable to assume that the flow within

the core of Meddy 2 was also significantly baroclinic. We will therefore assume in our

analysis that both Meddes 1 and 2 have order one baroclinicity. Choosing D = 500 m

and a. = 2 x 10- 5 s- 1 (implying that the flow speed varies by 2 cm s- 1 over the core),

it follows that the predicted translation speed is 0.2 cm s- 1. Finally, it was shown in

Chapter 3 that no solutions could be found for a lens with radius R = ND/fo for which

6.D > , from which it follows that the maximum attainable propagation speed is
Ga

UO.MAX = -ca.D. (5.5)

For the previous parameter values, this takes the value

UO.MAX : 0.33 cm s -  (5.6)

which is significantly smaller than the value of 1.4±0.3 cm s- found by Richardson et

al.. It is possible that this discrepancy is due to an underestimate of the external shear

strength. Alternatively, it is possible that it can be attributed to the fixed horizontal scale

that was used in the calculation. Recall that it was assumed that the radius of the lens

was given by R = ND/fo, while ocean data indicate that the radius of the lens may be

closer to 2ND/fo. How can this make a difference? In the context of the present model,

it is the differential circulation over the depth of the core, which (in conjunction with the

external shear) causes the eddy to propagate. The differential circulation component is
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bounded by the requirement that the circulation in the core be of the same sign at all

depths (recall that there were no solutions for which the circulation changed sign over the

depth of the core). As the horizontal dimension of the lens is increased, the circulation

increases, allowing for the possibility of larger differential rotation rates, and hence larger

propagation speeds. In the context of the present model, this implies that the estimated

value of b may be a function of the lens dimension, and preliminary calculations show

that larger lenses require significantly larger values of b to achieve the same variation in

rotation rate. Finally, it seems fairly certain that 8 plays some role in Meddy movement.

Using a nine layer QG -plane model, Beckmann et aL, (1989) found that a model Meddy

drifted nonuniformly to the southwest at about 0.8 cm s- 1, as a result of the mechanism

first described by Bretherton & Karweit (1975). More recently, Colin de Verdiere (in

press) has suggested a dynamical balance between the slow vertical erosion of the core of

the Meddy by small scale mixing processes and meridional translation on the f-plane. It

is possible that one or both of these mechanisms plays a role in producing the observed

translation. However, we feel that much of the discrepancy between the predicted and

observed speeds can be attributed to the fixed horizontal scale of the model vortex.

It is hypothesized that Meddies 1 and 2 are, on average, in configurations qualita-

tively like the steady configuration just described for much of the duration of Figure 5.3.

There is, of course, no obvious reason why the system should seek out such a steady con-

figuration, and one can easily envisage a situation in which the solution is periodic in the

external shear. In such a case, the boundary perturbation may be considered to have two

components, one of which is in a steady equilibrium with the external shear, the forced

component, and an homogeneous component, which precesses freely. This would lead

to a periodic modulation of the vortex boundary, with a period given by the precession

period of the homogeneous mode. It is quite likely that any freely precessing component

of the response is at least partially filtered out in our analysis, causing the response to

look more steady than it actually is. The apparent tilting of the lens is consistent with a

vertically sheared external flow which is approximately parallel to the direction of drift
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of the Meddy, and which becomes more intense with decreasing depth. The drift velocity

vectors in Figure 5.3 apparently represent some average of the external velocity field over

the Meddy core - not (directly) the vertical shear of the external flow. However, it is

reasonable to suppose that the direction of the external shear is well represented by these

vectors, if not its magnitude. The periods during which the Meddy is not in a transverse

configuration may correspond to events in which the magnitude or the direction of the

external shear changes, so that a steady balance cannot be maintained.

Possible Sources of Error

Given the small horizontal shifts of the rotation axis indicated in Figure 5.3a, it

is natural to question the accuracy of the computed positions. This is a rather complex

issue, as there are a number of random and systematic errors which could contaminate

the position data. The accuracy of the absolute position fixes will typically depend

upon where the float is located with respect to the array of moored listening stations

tracking it, on how well the listening stations are localized, on how accurately the mean

sound speed between source and receiver is known, and also upon how well the float

and listening station clock drifts which occur over the duration of the experiment can

be determined and corrected for. Further inaccuracies may be introduced by unknown

mooring motions, and also by sound speed fluctuations that occur between the float

and the listening stations. Finally, small systematic errors may be introduced when

different arrays of listening stations are used to track different floats. Therefore, in

the present analysis, all floats within a given Meddy have been tracked using the same

listening stations. We have reviewed the processing of the data, and believe that the

listening stations are well situated to track the floats, that the clock drift corrections

are quite clean, and that the position fixes for these floats should therefore be quite

good. It is estimated (P. Richardson, personal communication) that with a good tracking

configuration, as we have here, the absolute position of a float can be determined with

an accuracy of at best a few kilometers. However, the accuracy in determining the

displacement between two nearby floats will be significantly better than this, as most of
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the errors mentioned above will tend to cancel. For example, any error in the position

of a listening station should affect the computed positions of both floats in the same

way, and the error should subtract out when displacements are computed. Similarly,

the effect of large scale sound speed fluctuations between the Meddy and the listening

stations will tend to cancel out when the displacements are calculated. Finally, the effect

of random positioning errors on the float displacements is likely to be quite small, since

each point in the filtered trajectory represents an average of many individual position

fixes. A rather detailed analysis shows that for Meddy 2 this effect can be expected to

give errors which are on the order of 0.2 km (Richardson, personal communication). This

is significantly smaller than the displacements shown in Figure 5.3 for this Meddy, so it

seems unlikely that random positioning errors could qualitatively change our results.

There is one systematic error which will not tend to cancel, and that is due to

the different effective sound speeds for the two floats in the Meddy. This is a potentially

serious problem if the floats are at very different radii within the core. In this case,

averaged over time, the sound from the float nearer the center of the lens will travel

through more of the warm water in the core, leading to a decreased net travel time.

The travel time decrease will be erroniously interpreted as a lateral shift of one of the

trajectories relative to the other, which could lead one to conclude that the core is tilted.

This is illustrated in Figure 5.5 for the extreme case in which one float is exactly in the

center and the other is at the extreme edge of the Meddy core. At point PI, the sound

from float B must travel through the full diameter of the lens to reach the listening

stations, while at points p2, p3, and p4 the sound misses the warm core water entirely.

On average, then, the sound from this float travels a distance of about R through the

core, while that from the float A travels a distance R through the core. Thus, on average,

the sound from the float A travels through 1R more of the core water than does that

from the first float. The mazimum travel time difference due to this effect is then

1 1 1 , (5.7)
2 Coutade Cinside
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Figure 5.5: Mechanism by which mean float positions couid be biased by sound speed differences

if the floats are at different radii. On average, the sound from float A travels through more of

the warnm water in the core than does that from float B, as described in the text. As the sound

speed is greater inside the Meddy core than in the surrounding water, this leads to a travel time

difference, and an apparent shift in the average position of float A toward the listening station

relative to float B. It is estimated that for a lens 25 km in diameter with a temperature of 12 0 C

inside, 80 C outside, the maximum position error due to this effect is approximately 0.12 km (see

text). 148



where R is the radius of the lens. The maximum deviation in the float position due to

this effect is therefore

AR = cAt < !- C"'d (5.8)
2 c

We shall assume that the temperature is 120C inside the core, 8°C outside the core, that

the salinity is 36 psu inside, 35 psu outside, and that the depth is 1100 m. With these

assumptions, it follows that 2

Ci,,i, : 1516 m s- 1  (5.10)

Ct, i& 1502 m s- I 1 (5.11)

so the sound speed varies by about 0.9% due to the warmth and salinity of the core

water. Substituting these values into the expression for AR, and assuming (as before)

that the radius of the lens is 25 km, it follows that

AR < 0.12 kn. (5.12)

This is significantly smalier than the deviations shown in Figure 5.3, so we conclude that

the apparent tilting cannot be due this effect alone. A similar error is possible when the

two floats are at significantly different depths within the core. However, a 100 m depth

difference produces a change in sound speed of only 1.6 m s- 1, so that the maximum

possible error due to this effect is an order of magnitude smaller than the value of 0.12 km

listed above, and it follows that the effect is negligible in this case.

In conclusion, the data show a low mode distortion of the Meddy cores which

is evidently a consequence of the vertical shear of the external current. The size of

the observed distortion of Meddy 2 is consistent with a variation in the external flow

speed of about 2 cm s- 1 over the depth of the core, according to the simple theoretical

model discussed in Chapter 3. This external flow speed variation is in good qualitative

21,. kolII .l .ed (il Il S- ) call be caci,,ied .ising lhe sianlard foriu, da

c = 149!i.2 + .I.(;T - 11-.055T2 + (I.III)2gT' + (1.34 - i).( InTiS - 31) + 1.116 I f ;5.9)

wlwrt' T ir me&Rtred ill degrees Centligradc. z ill meters. and S ill Jarts per li on'ad (('Any and Medwill.

I'77. p 3 )
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agreement with the available data on the vertical structure of the flow within the Canary

Basin. The tilt is much larger in the data from Meddy 1, with displacements of the

rotation axis of the same order as the radius of the lens. This implies either that the

external shears are quite large, or else that one of the floats is not in the core at all,

but is instead in the region of trapped fluid outside the core. We favor the second

explanation. The predicted movement of the model vortex through the surrounding

waters is significantly smaller than that observed by Richardson et al. (1989). It is

felt that this discrepancy may be largely due to the fixed horizontal scale of the model

vortex.
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Concluding Remarks

Recent observations of subsurface mesoscale lenses have provided an unprece-

dented glimpse of their behavior in the ocean. The importance of the various mesoscale

and submesoscale lenses to the oceanic general circulation has not yet been fully assessed.

However, one such lens, the Meddy, is known to transport large amounts of warm & salty

Mediterranean water within the eastern North Atlantic. Meddes are thought to play an

important role in maintaining the structure of the Mediterranean Salt Tongue - a promi-

nent feature in the North Atlantic Circulation. The cores of these lenses are gradually

eroded via intrusive / double-diffusive mixing processes, and thus they are a source of

salt for the surrounding waters (e.g., Ruddick and Hebert, 1988). Meddles are known to

be embedded in a larger scale mean flow / eddy field, and we have tried to understand

the influence of this larger scale flow on Meddy behavior. A pair of simple process models

have been examined to investigate the role played by the external shear in determining

the viability of such eddies, and to determine the role played by the external shear in

producing the observed propagation of oceanic lenses. The availability of high quality

Lagrangian float data has permitted a direct verification of certain of the model predic-

tions. The float analysis has demonstrated that the rotation rates within the core may

vary significantly with depth. Furthermore, the data show that Meddy cores may be

deformed (presumably via interactions with external flows), and that this deformation

is apparently related to the translation velocity of the lenses. These results of the float

analysis were carefully checked to rule out the many possible errors.

While differing in their detailed predictions, the models which have been examined

give predictions which are qualitatively in agreement with observations. The point vortex

model discussed in Chapter 2 illustrated many aspects of the behavior of a mesoscale lens

in shear (e.g., a region of trapped fluid which is deformed by external flows, and which

may translate through the surrounding waters), while in Chapter 3 it was shown that the

simple dynamical mechanisms inherent in the point vortex model are readily generalized

to more sophisticated models. These solutions were found to propagate in the presence
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of external vertical shear, provided that the potential vorticity field associated with

the lens had a baroclinic component. Furthermore, the solutions exhibited an average

transverse tilt, which was shown to be consistent with the available float data. The

numerical integrations described in Chapter 4 extended these linear, analytical results

into the nonlinear regime, and demonstrated that the solutions are stable for moderate

values of the external shear and core barodinicity, and that therefore eddies of this

sort can be expected to persist for long periods of time. Thus, oceanic lenses governed

by these dynamics should last for long periods of time, which is in agreement with

the long observed lifetimes of Mediterranean Salt Lenses. While the model solutions

gave boundary deformations of the correct order (given the uncertainties concerning the

external flow), the predicted translation speeds were significantly smaller than those

observed by Richardson et at. (1989). This implies that other effects are important

in producing the large translation speeds that have been observed. The neglect of /3

rules out mechanisms like that proposed by Colin de Verdiere (in press) and Bretherton

and Karweit (1975). It seems fairly likely that these mechanisms play some role in

producing the observed movement, but the extent of that role is not presently known.

We believe that the analysis of the float data demonstrates fairly conclusively that the

mechanism proposed by Hogg & Stommel (1990) plays a role in producing the observed

propagation, and feel that the quantitative disagreement between the propagation speeds

of the model solutions and observed Meddy propagation speeds is due in large part to

the fixed horizontal scale of the model solutions, rather than to the neglect of 3, or other

model deficiencies. An examination of the effect of allowing the horizontal scale of the

lens to vary would be an interesting topic for further investigation. This would allow

a more meaningful comparison of the model results with the data. In particular, such

an analysis would give a better idea of where Mediterranean Salt Lenses actually lie in

the (a, b) plane (see Figure 4.8), which would allow a reas mnably confident prediction of

whether or not the unstable breakdown of the steady solutions documented in Chapter 4

can be expected to be an important oceanic effect. Despite the shortcomings in the
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present work which have been noted, it is felt that the simple model examined here does

a surprisingly good job of modeling several aspects of the behavior of real Mediterranean

Salt Lenses.
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Appendix 1: Kinematics

In this section the velocity field will be computed from the streamfunction 4.

Expressing the unit vertical vector 2 and the gradient operator I in the spherical coor-

dinates (r,9,4)):

= fcos0- i sint, (A.1)

,= + 08+ -.--- , (A1.2)

and recalling that the velocity and streamfinction are related by

it = i x'00, (A1.3)

it follows that

=2x = - - s + +sin00'k). (A1.4)

Thus the 4 velocity component is given by

U(1) = -os_.e0 + sin 0¢, . (A1.5)
r

These general relations can now be utilized to examine the flow associated with the basic

state streamfunction (3.7):

?2/- 1/2 + b ( z2/ ,. _.1 (A 1.6)

It follows by differentiation that

S= 1/3r 2  +b 2 cos0/ 15r3 ,(A1.7)

and

b -r 3 sin/10 + rsin0/6 )(A1.8)= b sinO/15r 2  '(18

so that

= rsin0 / ) + Lbr2 sin20 1 • (A1.9)
10 i54s
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Within the vortex core, this may be written

= ir + lbzr, , (A1.10)

where r± = r sin e is the perpendicular distance from the z axis. It follows that the

monopolar component of the potential vorticity field induces a flow within the vortex

core which is independent of z, while the dipole component induces a flow which has

uniform shear in z.
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Appendix 2: Calculation of the Integral (3.72)

In this section the integral (3.72) is computed for the continuous vortex model,

in which case

U E I fffL+ qdrf fjIqdr = f If qudr/ f ff9qdr .

(A2.1)

Physically, this says that the center of potential vorticity moves at a weighted average

of the flow speed over the vortex core. The translation speed uo is therefore defined to

be the rate at which the center of potential vorticity moves.

We intend to find uO by evaluating the second integral above. The calculation

can be considerably simplified by making use of a generalized version of the well known

Poincare vorticity theorem, which governs the evolution of various moments of a vorticity

field. To establish the theorem for stratified quasigeostrophic flows will require a brief

diversion. The theorem will show that uo, as defined above, must vanish in the absence

of an external flow ub. More specifically, uo must vanish if the flow decays faster than

i/r as r --+ oo. Because the calculations in Chapter 3 showed that velocities associated

with the basic state vortex are of O(r-2 ) as r -+ o, it follows that only the background

flow (which doesn't vanish as r --. oc) contributes to the above integral. To show this,

we begin with the potential vorticity equation

qt +0- ql = 0, (A2.2)

where

q ifz yy+lz (A2.3)

V += .

If the potential vorticity equation is multiplied by some twice differentiable function

A(r, y, z), a little manipulation gives

(Aq)t + I (Aqil) = qi!. A. (A2.4)
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Further manipulation shows that the right side of this equation can be written in the

form

qil. 'IA = (uvA. + 2(v 2 )Al - AyO!). + (A2.5)

+ (-uvA, + -(v2 - u2)A. + !Ay,2)y +

+ (uA.',P + vAvtkS)z +

- uv(A,. - Avu) - 2A.(v 2 - u 2 )/2 - uA,O, - vAyip.

Now, if A(z, y, z) is chosen such that

ACV = A 3Z=Ayz=O, (A2.6)

it follows that (A2.4) can be written in the form

(Aq)t + .(Aqil - S = 0O, (A2.7)

where 9 is given by

= (uvA. + 2(v2 2 u2)Ay - !Av 10)+ (A2.8)
S21

+ (-uvA, 1 + 1(V2 _ u2)Aw + A o) +

+ i(uA.,t + vAb,).

In accordance with (A2.6), A(z, y, z) is chosen in the special form

A(z, y, z) = a,(z 2 + y2 ) + a 2z 2 + a3 z + a4 y + asz + a6. (A2.9)

Now, if u, v, and t0. decay sufficiently rapidly as r -- oo, (A2.7) can be integrated over

all space to obtain:

Ot f f f Aqd-r = f f(Aqil- ).dY, (A2.1O)

where the surface integral results from using the divergence theorem, and the integration

is considered to be over the surface of a sphere of radius r as r --+ oo. Consider now the
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case in which A = z (which may be obtained through a suitable choice of the coefficients

in (A2.9)), and there is no external flow, so that q = 0 outside the vortex and u, v, and

0,z all vanish as r -- oo. Because u, v, and 0. are of 0(r - 2) as r --+ oo and the surface

of integration increases like r2, it follows that the right hand side of (A2.10) vanishes,

and therefore

atJIfzqid/r = 0 . (A2.11)

Because the integral is only a function of t, the partial derivative in (A2.11) can be

replaced by a total derivative, and then it it follows from (A2.1) that

f fuqvdr=O0.(A.2

Therefore, in the absence of an external flow, the center of potential vorticity of the

vortex cannot move (u0 = 0).

As a result of (A2.12), the integral (A2.1) can be written in the form

/= I I f qtbdr/ ff q.,,dr (A2.13)

where now only the external flow ub appears in the integrand. Next, because 1 < 1 the

integration can to a good approximation be carried out over the volume r < 1 of the

basic state vortex. This leads to

(1qb + bz)(u, + Ub)dr/(-4,r) + 007 2) (A2.14)

The part of the integrand proportional to u,, integrates to zero, for the reasons discussed

above. Thus, in spherical coordinates:

uo1 (4r )-1 (1 + qb + br cos )(ar cos 0- br sin 0sin O)r2 sinOdrdd40, (A2.15)

where we have put

Ub = a - qbY ,

as in Chapter 3. All terms proportional to qb integrate out, and we are left with

uo :t ab(4r)-i1  f cos 2 0 sin OdrdOd4, (A2.16)
3 I i
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which may be readily evaluated to get

1
Uo ;Z- b (A2.17)

This is the potential vorticity weighted average of the background flow speed over the

core. In the present case, it can be shown that this is equal to the background flow speed

at the center of potential vorticity:

< Ub >= ub(< z >,< y >,< z >) (A2.18)

where we use the notation

< >-J +qt. d-r/J < qdr . (A2.19)

The result (A2.18) follows from the fact that ub is a linear function of its arguments.

This relation will be used to compute the translation speeds of the numerical solutions

discussed in Chapter 4.
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Appendix 3: Evaluation of the Integral (3.41)

In this section the integral

Fn. = Jf e (ue sin 0cos 0+ Ob,)Y,"*da' (A3.1)

is evaluated, which is just equation (3.41) from Chapter 3. As in Chapter 3, ,bb is of the

form

'Pb = b 2 _ QZI (A3.2)

so that (A3.1) may be written

F.. J (u i o i o 9cs0+q i sin 24)Y, m doc. (A3.3)

Making use of the following definitions (see, e.g., Arficen, p.448):

=1 Visin Oe4 (A3.4)

Y2
1 = -3 /24sin~cos~e"'

yiI =+3 V\/247sin 0cos e-"

Y2  +3 5 ~Sin2 ee2io

y -2  =+3y' sin 2Oe 2io,

it is easily shown that

sinecos.o = -V8_7 1(Yi1-Y 1)/2 (A3.5)

sinecosecoso = ~V2/4;7r/( 2 -Yj

sin 2 sin2O = 1fr/y2- 2 ).

Substituting these expressions into the integral (A3.3), and using the orthogonality prop-

erties of the spherical harmonics 1gives

F,.. = -uoV27/3(&6n,1~ nim..i (A3.6)

+_bV967r/5(6n,26m,2 - n,26,,-2) + Q N247r/5(t5n. 2bn.1 - 6n,26,,1) .
12i 6
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Appendix 4: Numerical Implementation of the Contour Dynamics Algorithm

In this section a summary of the numerical implementation of the contour dy-

namics code used in Chapter 4 is given. The derivation of the analytical form of the

equations was given in Chapter 4. The code is designed to solve the following set of

integro-differential equations numerically

dt
dy - ! q(z)Gdyodzo + vb

dt f ft

At each time step, the surface integral on the right hand side is computed numerically,

then the points on the boundary are evolved in time, using a 2nd order Runge-Kutta

time stepping scheme to compute the time derivatives. The numerical results appear to

be quite accurate. Numerical integrations reproduce the particle rotation rates and the

precession frequencies of the simple analytical solutions quite accurately. In addition,

the area within each horizontal contour is preserved quite accurately (as it should be)

as long as the boundary is adequately resolved and the time step not too large.

In order to compute the integral, the boundary must first be discretized. This is

done by taking horizontal sections through the vortex, so that the surface is represented

by a series of closed horizontal contours. Each of these contours is in turn represented

by a number of points z(i), y(i), spaced more or less evenly around the contour. The

boundary must then be 'tiled' into uniquely defined area elements. This is done by defin-

ing quadrilateral elements everywhere except at the top and bottom, where triangular

elements are used. This is sketched in Figure A7.1a. The tiling system requires that

each layer have the same number of points, so that shorter contours (e.g., the top and

bottom) will be relatively over resolved. In addition, the scheme requires that points in

adjacent layers remain relatively well 'synchronized'. Therefore, at each time step the

points on a given layer are relabeled so that the 'first' point on the contour is more or

less aligned with the first point on the contour immediately above. The points are then

redistributed so that they are equally spaced around each contour.
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a

b e3

Figure A7.1: Figure A7.1a illustrates the way in which the boundary of the lens is tiled. At the
top and bottom of the lens area elements are triangular; everywhere else they are quadrilaterals.
Figure A7.1b shows a typical area element.
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The numerical implementation of (A4.1) can be written

-- 1  = - tG(Zij I tc.a)q,,(zck)6zc6zc + s.p. + ub(ij), (A4.2)

dt

where echi gives the coordinates of the 'centroid'of an area element. Thus, G is evaluated

at the centroid of each area element, multiplied by the elemental area, and summed. It

should be noted that the summation is carried out over only those elements which are

not adjacent to the point £ij, since the integrand varies rapidly in these regions, and an

analytic 'patch' (denoted by s.p.) is needed. Furthermore, the accuracy of the calculation

improved when the Green's function was expanded in a truncated Taylor series about

the centroid of nearby area elements. This patch is obtained by finding an analytic

expression for the integral of the Green's Function on elements surrounding the source

point. The sourcepoint integral is of the form

JfAp. =(A4.3)

At the top and bottom of the boundary the shape of the elemental area AA is triangular,

everywhere else the AA are quadrilaterals, as shown in Figure A7.1a.

To compute the sourcepoint integral, conLsider the area AA shown in Figure A7.1b.

Assume that in a locally defined coordinate system the bottom of the element is given

by z = 0 and the top is at z = zT. In addition, assume that the left and right sides

are given by ZL = Bz and zR = C + Dz, respectiveiy The integral (A4.3) can then be

integrated once to get

S.p. = n(z + v + z2 I' dz. (A4.4)

This can be rewritten in the form

=fo2
T (sinh-1(zR(z)/z) - sinh-'(L(Z)/z)) dz (A4.5)

which can be evaluated to get

s.p. = zTsinh- 1 B - zTsinh- (D + C/ZT) +
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+ C ~sinh-'D - sinh-l( CD/ZT + 1 +D 2)) (A4.6)

This result can be substituted into (A4.2), and the boundary can then be evolved in

time.
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